MATH 250 HANDOUT 16 - EQUIVALENCE RELATIONS

(1) Which of the following are equivalence relations? (Which are reflexive, symmetric, or transitive?)
 (a) Let S be the collection of all sets and say that $A \sim B$ if there is a bijection from A to B.
 (b) Let S be the collection of all sets and say that $A \sim B$ if there is a surjection from A to B.
 (c) Let S be the collection of all sets and say that $A \sim B$ if there is an injection from A to B.
 (d) Let S be the collection of all sets and say that $A \sim B$ if $A \cap B$ is empty.
 (e) Let x and y be real numbers and define $x \sim y$ if $x - y \in \mathbb{Q}$.
 (f) Let x and y be real numbers and define $x \sim y$ if $x = 1$ or $y = 1$.
 (g) Let x and y be real numbers and define $x \sim y$ if $x = 1$ or $y = -1$.
 (h) Let $\mathbb{Q}[x]$ be the set of polynomials with rational coefficients. Say that $f \sim g$ if their derivatives are equal.
 (i) Say that $f \sim g \in \text{Fun}(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that $a < 0 < b$ and such that $f(x) = g(x)$ for all $x \in (a, b)$.
 (j) Say that $f \sim g \in \text{Fun}(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that $a < b$ and $f(x) = g(x)$ for all $x \in (a, b)$.
 (k) Say that $f \sim g \in \text{Fun}(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that $f(x) = g(x)$ for all $x \in (a, b)$.
 (l) Say that two power series f and g are related if all but finitely many of their coefficients are the same.
 (m) Say that two power series f and g are related if at least one of their coefficients are the same.
 (n) Say that two power series f and g are related if $f - g$ is a polynomial.

Answers (please circle):

(a) R S T
(b) R S T
(c) R S T
(d) R S T
(e) R S T
(f) R S T
(g) R S T
(h) R S T
(i) R S T
(j) R S T
(k) R S T