\[s(2k) = (-1)^{k+1} \frac{(2\pi)^{2k}}{2(2k)!} B_{2k}. \]

As an example, we see that the series \(\sum_{n=1}^{\infty} \frac{1}{n^4} \) converges to \(\pi^4/90 \).

Exercises 5.2

1. Prove the following formulas using mathematical induction.
 (a) \(1 + 3 + 5 + \ldots + (2n - 1) = n^2. \)
 (b) \(1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6}. \)
 (c) \(1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n + 1)^2}{4}. \)

2. Prove the following:
 (a) \(1^2 + 3^2 + 5^2 + \ldots + (2n - 1)^2 = \frac{(2n - 1)(2n)(2n + 1)}{6}. \)
 (b) \(2^2 + 4^2 + 6^2 + \ldots + (2n)^2 = \frac{(2n)(2n + 1)(2n + 2)}{6}. \)

3. Prove that if \(a \) is any real number except 1, then
 \[1 + a + a^2 + a^3 + \ldots + a^n = \frac{(a^{n+1} - 1)}{a - 1}. \]

4. (a) Prove that \(2^n > n^2 \) for all integers \(n \geq 5 \).
 (b) Prove that \(2^n < n! \) for all \(n \geq 4 \).

5. Let \(a, b_1, b_2, \ldots, b_n \in \mathbb{Z} \). Prove that \(a(b_1 + b_2 + \ldots + b_n) = ab_1 + ab_2 + \ldots + ab_n \).

6. Let \(f: \mathbb{Z}^+ \to \mathbb{Z}^+ \) be defined recursively by \(f(1) = 1 \) and \(f(n + 1) = f(n) + 2^n \) for all \(n \in \mathbb{Z}^+ \). Prove that \(f(n) = 2^n - 1 \).

7. Let \(f: \mathbb{Z}^+ \to \mathbb{R} \) be defined recursively by \(f(1) = 1 \) and \(f(n + 1) = \sqrt{2 + f(n)} \) for all \(n \in \mathbb{Z}^+ \). Prove that \(f(n) < 2 \) for all \(n \in \mathbb{Z}^+ \).

8. The **Fibonacci numbers** \(f_n, n = 1, 2, 3, \ldots, \), are defined recursively by the formulas \(f_1 = 1, f_2 = 1, f_n = f_{n-1} + f_{n-2} \) for \(n \geq 3 \).
 (a) Write out the first ten Fibonacci numbers.
 (b) Compute \(f_1 + f_2, f_1 + f_2 + f_3, f_1 + f_2 + f_3 + f_4 \).
 (c) Derive a formula for the sum of the first \(n \) Fibonacci numbers and prove it by induction.
 (d) Prove that \(f_1^2 + f_2^2 + \ldots + f_n^2 = f_nf_{n+1} \) for all \(n \geq 1 \).

9. Let \(H_n \) be the number of handshakes required if in a group of \(n \) people each person shakes with every other person exactly once.
 (a) Compute \(H_0, \ldots, H_5 \).
(c) Find an explicit formula for \(H_n \).

10. Let \(A_1, A_2, \ldots, A_n \) be a collection of finite mutually disjoint sets. Prove that

\[
\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i|.
\]

(This is Corollary 2.3.5 of Section 2.3. You may assume Theorem 2.3.4 given in that section.)

11. Let \(* \) be an associative binary operation on a set \(A \) with identity element \(e \). Let \(B \) be a subset of \(A \) that is closed under \(* \). Let \(b_1, b_2, \ldots, b_n \in B \). Prove that \(b_1 * b_2 * \ldots * b_n \in B \).

12. Let \(* \) be an associative binary operation on a set \(A \) with identity element \(e \). In Exercise 32 of Section 4.1, you were asked to prove that if \(B \) and \(C \) are subsets of \(A \) that are closed under \(* \), then \(B \cap C \) is closed under \(* \). Prove by induction that if \(B_1, B_2, \ldots, B_n \) are subsets of \(A \) that are all closed under \(* \), then \(B_1 \cap B_2 \cap \ldots \cap B_n \) is closed under \(* \).

13. (a) Let \(n \) be an integer. Prove by induction that if \(n \) is even, then \(n^k \) is even for all \(k \in \mathbb{Z}^+ \).

(Note: the induction should be done with the variable \(k \), not the variable \(n \).)

(b) State the converse of part (a). Prove or disprove.

14. Prove by induction that if \(n_1, n_2, \ldots, n_t \) are even integers, then \(n_1 + n_2 + \ldots + n_t \) is even.

15. Let \(A, B_1, B_2, \ldots, B_n \) be sets. Generalize part 2 of Theorem 2.2.3 by proving that

\[
A \cup (B_1 \cap B_2 \cap \ldots \cap B_n) = (A \cup B_1) \cap (A \cup B_2) \cap \ldots \cap (A \cup B_n).
\]

16. Let \(A \) be a nonempty set. Let \(f_1, f_2, \ldots, f_n \in \mathcal{F}(A) \). Prove:

(a) If \(f_1, f_2, \ldots, f_n \) are surjective, then the composition \(f_1f_2 \ldots f_n \) is surjective.

(b) If \(f_1, f_2, \ldots, f_n \) are injective, then the composition \(f_1f_2 \ldots f_n \) is injective.

(c) If \(f_1, f_2, \ldots, f_n \) are invertible, then the composition \(f_1f_2 \ldots f_n \) is invertible and \((f_1f_2 \ldots f_n)^{-1} = f_n^{-1}f_{n-1}^{-1} \ldots f_2^{-1}f_1^{-1} \).

17. Let \(P(n) \) be a statement about the positive integer \(n \). Using the negations of conditions 1 and 2 in Theorem 5.2.1, complete the following sentence: \(P(n) \) is false for some positive integer \(n \) if

18. Prove Theorem 5.2.2.

19. Prove Theorem 5.2.3.

20. State a modified form of the Second Principle of Induction similar to the modified form of the First Principle of Induction.

21. Prove Theorem 5.2.4.
integers less than 10^{10}. So although just about everyone believes that it is true, no general proof seems forthcoming in the immediate future.

Exercises 5.4

1. Prove Lemma 5.4.2.

2. Let $n \in \mathbb{Z}$, $n > 1$. Prove that if n is not divisible by any prime number less than or equal to \sqrt{n}, then n is a prime number.

3. Let n be a positive integer greater than 1 with the property that whenever n divides a product ab where $a, b \in \mathbb{Z}$, then n divides a or n divides b. Prove that n is a prime number.

4. Prove Corollary 5.4.5.

5. Prove Corollary 5.4.6.

6. (a) Prove that $\sqrt{2}$ is irrational.
 (b) Prove that $\sqrt[3]{2}$ is irrational.
 (c) Prove that $\sqrt[3]{2}$ is irrational for every $n \in \mathbb{Z}, n \geq 2$.
 (d) Prove that if p is a prime number, then \sqrt{p} is irrational for every $n \in \mathbb{Z}, n \geq 2$.
 (e) Let $n, m \in \mathbb{Z}, n \geq 2$. Prove that if m is not the nth power of an integer, then $\sqrt[n]{m}$ is irrational.

7. (a) Prove that $\log_{10} 3$ is irrational.
 (b) Prove that if r is a rational number such that $r > 1$ and $r \neq 10^n$ for any positive integer n, then $\log_{10} r$ is irrational.

8. Write the following integers in standard form:
 (a) 594
 (b) 1,400
 (c) 42,750
 (d) 191,737

9. Let $n \in \mathbb{Z}, n \geq 1$. Prove that n is a perfect square if and only if, when n is written in standard form, all of the exponents are even.

10. Let $a, b \in \mathbb{Z}$.
 (a) Prove that if $a^2 \mid b^2$, then $a \mid b$.
 (b) Prove that if $a^n \mid b^n$ for some positive integer n, then $a \mid b$.

11. (a) Let $a, b \in \mathbb{Z}$ such that $(a, b) = 1$. Suppose that $ab = x^2$ for some x in \mathbb{Z}. Prove that $a = y^2$ and $b = z^2$ for some y and z in \mathbb{Z}.
 (b) Show that part (a) is false without the assumption that a and b are relatively prime.
 (c) Let $a, b \in \mathbb{Z}$ such that $(a, b) = 1$. Suppose that $ab = x^n$ for some x in \mathbb{Z} and some positive integer n. Prove that $a = y^n$ and $b = z^n$ for some y and z in \mathbb{Z}.
 (d) Let $a, b, c \in \mathbb{Z}^+$ such that $(a, b) = (a, c) = (b, c) = 1$. Suppose that $abc = x^2$ for some x in \mathbb{Z}^+. Prove that $a, b,$ and c are all squares in \mathbb{Z}^+.
5.4 PRIMES AND UNIQUE FACTORIZATION

(e) Let \(a_1, a_2, \ldots, a_n \in \mathbb{Z}^+ \) such that \((a_i, a_j) = 1\) if \(i \neq j\). Suppose that \(a_1a_2 \ldots a_n = x^2\) for some \(x\) in \(\mathbb{Z}^+\). Prove that each \(a_i\) is a square in \(\mathbb{Z}^+\).

12. Prove that if a positive integer of the form \(2^m + 1\) is prime, then \(m\) is a power of 2.

13. Prove that 2 is the only prime of the form \(n^3 + 1\).

14. Prove that if \(2^n - 1\) is prime, then \(n\) is prime.

15. Investigate the following statement:

 If \(n\) is any positive integer, then \(n^2 + n + 41\) is always a prime number.

 If you think it is true, give a proof; if false, give a counterexample.

16. Let \(a, b \in \mathbb{Z}^+, a > 1, b > 1\). Let \(a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdots \cdot p_r^{\alpha_r}\) and \(b = p_1^{\beta_1} \cdot p_2^{\beta_2} \cdots \cdot p_r^{\beta_r}\), where \(p_1, p_2, \ldots, p_r\) are primes and \(\alpha_i\) and \(\beta_i\) are nonnegative integers, for \(i = 1, 2, \ldots, r\). Let \(l_i = \min(m_i, n_i)\). Prove that \((a, b) = p_1^{l_1} \cdot p_2^{l_2} \cdots \cdot p_r^{l_r}\).

17. Use Exercises 8 and 16 to find the greatest common divisor of 1,400 and 42,750.

18. Prove that if \(a\) is a positive integer of the form \(4n + 3\), then at least one prime divisor of \(a\) is of the form \(4n + 3\).

19. Prove that if \(a\) is a positive integer of the form \(3n + 2\), then at least one prime divisor of \(a\) is of the form \(3n + 2\).

20. Prove that there are infinitely many primes of the form \(3n + 2, n \in \mathbb{Z}^+\).

21. Prove that there are infinitely many primes of the form \(6n + 5, n \in \mathbb{Z}^+\).

22. Let \(n\) be a positive integer. Prove that the binomial coefficient \(\binom{2n}{n}\) is divisible by every prime \(p\) such that \(n < p \leq 2n\) but is not divisible by \(p^2\).

23. Let \(p\) be a prime number and \(t\) a positive integer. Let \(a \in \mathbb{Z}\). Suppose that \(a\) divides \(p^t\). Prove that \(a = p^k\) for some \(k \in \mathbb{Z}, 1 \leq k \leq t\).

24. Let \(n, m \in \mathbb{Z}, (n, m) = 1\). Suppose that \(d\) is a positive divisor of \(nm\). Prove that there exist positive integers \(d_1\) and \(d_2\) such that \(d = d_1d_2\) where \(d_1\) divides \(n\) and \(d_2\) divides \(m\).

25. If \(n\) is a positive integer, let \(\tau(n)\) denote the number of positive divisors of \(n\). So, for example, \(\tau(1) = 1, \tau(2) = 2, \tau(3) = 2, \tau(4) = 3, \tau(5) = 2, \tau(6) = 4\).

(a) Prove that if \(p\) is a prime number and \(t\) is a positive integer, then \(\tau(p^t) = t + 1\).

(b) Let \(n, m \in \mathbb{Z}, (n, m) = 1\). Prove that \(\tau(nm) = \tau(n)\tau(m)\).

(c) Let \(n \in \mathbb{Z}\). Let \(n = p_1^{a_1} \cdot p_2^{a_2} \cdots \cdot p_r^{a_r}\) be the prime factorization of \(n\). Prove that \(\tau(n) = (a_1 + 1)(a_2 + 1) \cdots (a_r + 1)\).