Read the following, which can all be found either in the textbook or on the course website.

- Chapters 1 & 2 of *Visual Group Theory* (VGT).
- VGT Exercises 1.1–1.4, 1.8–1.12, 2.13–2.17.
- The article *Group Think* by Steven Strogatz, which appeared in the NY Times in 2010.

Write up solutions to the following exercises.

1. Given a regular \(n \)-gon, let \(r \) be a rotation of it by \(2\pi/n \) radians. This time, assume that we are not allowed to flip over the \(n \)-gon. These \(n \) actions form a group denoted \(C_n = \langle r \rangle = \{e, r, r^2, \ldots, r^{n-1}\} \).

 (a) Draw a Cayley diagram for \(C_n \) for \(n = 4, n = 5, \) and \(n = 6 \).
 (b) For \(n = 4, 5, 6 \), find all minimal generating sets of \(C_n \).
 (c) Make a conjecture of what integers \(k \) does \(C_n = \langle r^k \rangle \) for a general fixed integer \(n \).

2. As we saw in lecture, the six symmetries of an equilateral triangle \(\triangle \) form a group denoted \(D_3 = \{e, r, r^2, f, rf, r^2f\} \), where \(r \) is a 120° clockwise rotation and \(f \) is a flip about a vertical axis (which fixes the top corner). Since \(r \) and \(f \) suffice to generate all six of these symmetries, we write \(D_3 = \langle r, f \rangle \).

 (a) Let \(g \) be the reflection of the triangle that fixes the lower-left corner. Which of the six actions in \(D_3 \) is \(g \) equal to? Which action is \(fg \)?
 (b) Write all 6 actions of \(D_3 \) using only \(f \) and \(g \). Draw a Cayley diagram using \(f \) and \(g \) as generators.
 (c) To generate \(D_3 \), we need at least 2 actions. It is not difficult to show that if we have 3 generators, then one of them is unnecessary. Find all minimal generating sets of \(D_3 = \{e, r, r^2, f, rf, r^2f\} \); note that all of them should have exactly two actions. Do not use \(g \) in this list.

3. The eight symmetries of a square \(\square \) form a group denoted \(D_4 \). Let \(r \) be a 90° clockwise rotation and \(f \) a horizontal flip (that is, about a vertical axis). It is not difficult to show that \(D_4 = \langle r, f \rangle \).

 (a) Write all 8 actions of \(D_4 \) using \(r \) and \(f \) and draw a Cayley diagram using these two actions as generators.
 (b) Let \(g \) be the reflection of the square that fixes the lower-left and upper-right corner. Which of the eight actions in \(D_4 \) is \(g \) equal to? Which action is \(fg \)?
 (c) Draw a Cayley diagram of \(D_4 \) using \(f \) and \(g \) as generators.
 (d) Find all minimal generating sets of \(D_4 \). [Hint: There are 12.]
4. Pick any integer and consider this set of actions: adding any integer to the one you choose. This is an infinite set of actions; we might name them like “add 1” and “add -4210,” etc. This is a group. Find all minimal generating sets. Sketch a Cayley graph for this group using one of these minimal generating sets.