Read the following, which can all be found either in the textbook or on the course website.

- Chapter 8.2 of *Visual Group Theory* (VGT).
- VGT Exercises 8.11, 8.13, 8.14, 8.16, 8.17

Write up solutions to the following exercises.

1. Let \(\mathbb{Q} \) be the group of rational numbers under addition, \(\mathbb{Q}^* \) be the group of non-zero rational numbers under multiplication, and let \(\mathbb{Q}^+ \) be the group of positive rational numbers under multiplication.

 (a) Prove that \(C_2 \cong \{1, -1\} \).
 (b) Describe the quotient groups \(\mathbb{Q}/\langle 1 \rangle \) and \(\mathbb{Q}^*/\langle -1 \rangle \). In particular, what do the elements (cosets) look like?
 (c) Show that \(\mathbb{Q}^* \cong \mathbb{Q}^+ \times C_2 \).

2. For Parts (a)–(d), a group \(G \) is given together with a normal subgroup \(H \). Illustrate the embedding \(\phi: H \to G \), and the quotient map \(q: G \to G/H \), chained together so that \(\text{im}(\phi) = \ker(q) \). An example for \(G = \mathbb{Z}_6 \) and \(H = \mathbb{Z}_2 \) is shown below:

 ![Diagram](chart)

 (a) \(G = \mathbb{Z}_6, H = \mathbb{Z}_3 \),
 (b) \(G = S_3, H = C_3 \),
 (c) \(G = A_4, H = V_4 \),
 (d) \(G = S_3, H = A_3 \)

 Now, answer the following question about each of your answers to Parts (a)–(c).

 (e) What group is \(G/H \) isomorphic to? Write out the isomorphism.

3. Let \(A \) and \(B \) be normal subgroups of \(G \). In this problem, you will prove the *Diamond Isomorphism Theorem*.

 (a) Prove that the set \(AB := \{ab : a \in A, b \in B\} \) is a subgroup of \(G \).
 (b) Prove that \(B \triangleleft AB \) and \(A \cap B \triangleleft A \).
(c) Prove that $A/(A \cap B) \cong AB/B$. [Hint: Construct a homomorphism $\phi: A \to AB/B$ that has kernel $A \cap B$, then apply the FHT.]

(d) Draw a diagram, or lattice, of G and its subgroups $AB, A, B,$ and $A \cap B$. Interpret the result in Part (c) in terms of this diagram.

4. For each part below, consider the group $G = \langle A, B \rangle$ generated by the two matrices shown. Assume that matrix multiplication is the binary operation, and $i = \sqrt{-1}$. To what common group is G isomorphic? Write down an explicit isomorphism (you only need to define it for the generators), and a group presentation for G.

(a) $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$

(b) $A = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$

(c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$

5. Let $H \leq G$, and fix $x \in G$. Recall that we showed in class that xHx^{-1} is always a subgroup of G.

(a) Prove additionally that $xHx^{-1} \cong H$. [Hint: Define a mapping from H to xHx^{-1} and prove that it is a homomorphism, one-to-one, and onto.]

(b) Use Part (a) to show that $o(xy) = o(yx)$ for any $x, y \in G$. (Recall that $o(g)$ is the order of g.)

6. In this exercise, you will prove that if A and B are normal subgroups of G, and $AB = G$, then

$$G/(A \cap B) \cong (G/A) \times (G/B).$$

(a) Consider the following map:

$$\phi: AB \rightarrow (G/A) \times (G/B), \quad \phi(g) = (gA, gB).$$

Show that ϕ is a homomorphism.

(b) Show that ϕ is surjective. That is, given any (g_1A, g_2B), show that there is some $g = ab \in AB$ such that $\phi(g) = (g_1A, g_2B)$. [Hint: Try $g = a_2b_1$.]

(c) Find $\ker(\phi)$ [you need to prove your answer is correct] and then apply the Fundamental Homomorphism Theorem.