Read the following, which can all be found either in the textbook or on the course website.

- Chapters 8.3, 8.4, 8.5 of *Visual Group Theory* (VGT).
- VGT Exercises 8.19, 8.22, 8.23, 8.26, 8.37(ab), 8.41, 8.43-8.50.

Write up solutions to the following exercises.

1. We say that a product of cyclic groups $C_{n_1} \times \cdots \times C_{n_r}$ is “organized by elementary divisors” if n_i divides n_{i+1} for every i. For example:

$$C_2 \times C_4 \times C_3 \times C_9 \times C_5 \cong C_9 \times C_{180};$$

the left group is *not* organized by elementary divisors, but the right group is.

For each order given below, list all abelian groups of that order by writing each one as a product of cyclic groups of prime power order. Additionally, write each one as a product of cyclic groups organized by “elementary divisors.”

(a) 8
(b) 54
(c) 400
(d) p^2q, where p and q are distinct primes.

2. The commutator subgroup of a group G is the subgroup

$$G' = \langle aba^{-1}b^{-1} \mid a, b \in G \rangle.$$

(a) Prove that G is abelian if and only if $G' = \{e\}$.

(b) Prove that G' is the intersection of all normal subgroups of G that contain the set $C := \{aba^{-1}b^{-1} \mid a, b \in G\}$:

$$G' = \bigcap_{C \subseteq N \triangleleft G} N$$

(c) If we quotient G by G', then we are in essence, “killing” all non-abelian parts of the Cayley diagram, as shown below:

Prove algebraically that G/G' is indeed abelian.
3. Find the commutator subgroup of each of the following groups and compute its abelianization.

(a) An abelian group \(A \).
(b) \(Q_4 \)
(c) The alternating group \(A_n \), for \(n \geq 5 \). [\textit{Hint}: \(A_n \) is a \textit{simple group}, which means its only normal subgroups are \(\langle e \rangle \) and \(A_n \).]
(d) The dihedral group \(D_n \) for \(n \) even.
(e) The dihedral group \(D_n \) for \(n \) odd.

4. For each group \(G \), find all automorphisms and make a multiplication table of \(\text{Aut}(G) \). What group is it isomorphic to?

(a) \(\mathbb{Z}_7 \)
(b) \(\mathbb{Z}_8 \)
(c) \(\mathbb{Z}_{10} \)
(d) \(V_4 \)
(e) \(D_3 \)
(f) \(\mathbb{Z}_2 \times \mathbb{Z}_3 \)
(g) \(\mathbb{Z}_2 \times \mathbb{Z}_2 \)