Read the following, which can all be found either in the textbook or on the course website.

- Chapters 8.6, 9.1, 9.2 of *Visual Group Theory* (VGT).

Write up solutions to the following exercises. In the exercises below, the set $\text{Fix } \phi$ of fixed points of a group action $\phi: G \to \text{Perm } S$ is the set of $s \in S$ such that $\text{Stab } s = G$. (I.e. the set of $s \in S$ such that $\phi_g(s) = s$ for all $g \in G$.)

1. Let G act on a set S. Prove that $\text{Stab}(s)$ is a subgroup of G for every $s \in S$.

2. If C_5 acts on the set $S = \{A, B, C, D\}$, what will the action diagram be? Why?

3. Let S be the following set of 7 “binary squares”:

$$S = \left\{ \begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
\end{array} \right\}$$

 (a) Consider the (right) action of the group $G = V_4 = \langle v, h \rangle$ on S, where $\phi(v)$ reflects each square vertically, and $\phi(h)$ reflects each square horizontally. Draw an action diagram and compute the stabilizer of each element.

 (b) Consider the (right) action of the group $G = C_4 = \langle r \mid r^4 = e \rangle$ on S, where $\phi(r)$ rotates each square 90° clockwise. Draw an action diagram and compute the stabilizer of each element.

 (c) Suppose a group G of size 15 acts on S. Prove that there must be a fixed point.

4. Let $G = S_4$ act on itself by conjugation via the homomorphism

$$\phi: G \to \text{Perm}(S), \quad \phi(g) = \text{the permutation that sends each } x \mapsto g^{-1}xg.$$

 (a) How many orbits are there? Describe them as specifically as you can.

 (b) Find the orbit and the stabilizer of the following elements:

 i. e
 ii. $(1\;2)$
 iii. $(1\;2\;3)$
 iv. $(1\;2\;3\;4)$

5. A *p-group* is a group of order p^k for some integer k. Recall that the *center* of a group G is the set of all elements that commute with everything:

$$Z(G) = \{ z \in G \mid gz = zg, \forall g \in G \} = \{ z \in G \mid g^{-1}zg = z, \forall g \in G \}.$$

Finally, a group G is *simple* if its only normal subgroups are G and $\langle e \rangle$.
(a) Let G act on itself by conjugation via the homomorphism
\[\phi: G \rightarrow \text{Perm}(S), \quad \phi(g) = \text{the permutation that sends each } x \mapsto g^{-1}xg. \]
Prove that $\text{Fix}(\phi) = Z(G)$.
(b) Prove that if G is a p-group, then $|Z(G)| > 1$. [Hint: Revisit the Class Equation.]
(c) Use the result of the previous part to classify all simple p-groups.

(a) If all subgroups of G of order 4 are isomorphic to V_4, then what group must G be? Completely justify your answer.
(b) Next, suppose that G has a subgroup $H \cong C_4$. Then G has a Cayley diagram like one of the following:

```
(a)  a  b  c  d
      |   |
     b   c
```
```
(b)  a  b  c  d
      |   |
     d   b
```

Find all possibilities for finishing the Cayley diagram.
(c) Label each completed Cayley diagram by isomorphism type. Justify your answer.
(d) Make a complete list of all groups of order 8, up to isomorphism.

7. Recall that a group G is called simple if its only normal subgroups are G and $\{e\}$. Let p be a prime.
(a) Show that there is no simple group of order $2p$. (Hint: use the Cauchy’s Theorem)
(b) Show that there is no simple group of order $2p^n$. (Hint: use the 1st Sylow Theorem)