An Optimal Control Framework for Efficient Training of Deep Neural Networks

IBM TJ Watson Research Center

January 9, 2018

Lars Ruthotto
Department of Mathematics and Computer Science, Emory University
Xtract Technologies, Vancouver
lruthotto@emory.edu
Three Fundamental (Open) Questions

Expressibility
- how to find neural network that can approximate function of interest?
- successes: approximation theorems, optimal sparsity, . . .
- communities: harmonic analysis, approximation theory, . . .
Three Fundamental (Open) Questions

Expressibility
- how to find neural network that can approximate function of interest?
- successes: approximation theorems, optimal sparsity, . . .
- communities: harmonic analysis, approximation theory, . . .

Learning
- how to (efficiently) train neural network?
- successes: stochastic gradient and zoo of variants (including ADAM, second-order, . . .)
- community: mainly optimization and optimal control
Three Fundamental (Open) Questions

Expressibility
- how to find neural network that can approximate function of interest?
- successes: approximation theorems, optimal sparsity, . . .
- communities: harmonic analysis, approximation theory, . . .

Learning
- how to (efficiently) train neural network?
- successes: stochastic gradient and zoo of variants (including ADAM, second-order, . . .)
- community: mainly optimization and optimal control

Generalization
- does the neural network generalize?
- successes: VC dimensions, bias/variance dilemma, regularization, . . .
- community: mainly statistics
Four Fundamental (Open) Questions

Expressibility
- how to find neural network that can approximate function of interest?
- successes: approximation theorems, optimal sparsity, . . .
- communities: harmonic analysis, approximation theory, . . .

Learning
- how to (efficiently) train neural network?
- successes: stochastic gradient and zoo of variants (including ADAM, second-order, . . .)
- community: mainly optimization and optimal control

Generalization
- does the neural network generalize?
- successes: VC dimensions, bias/variance dilemma, regularization, . . .
- community: mainly statistics

Computing
- how to design network that is expressive and generalizes well and which method will train it efficiently?
- successes: hardware, . . .
- community: scientific computing
Team and Acknowledgements

Joint work: Emory ↔ Xtract Tech. ↔ University of British Columbia

Lili Meng Bo Chang Elliot Holtham Eldad Haber Seong Hwan Jun

Funding:

- This work is supported in part by NSF award DMS 1522599
- Thanks to NVIDIA Corp for donation of a TITAN X GPU
Agenda: Optimal Control Framework for Deep Learning

- Deep Learning meets Optimal Control
- Stability and Generalization
 - when is deep learning well-posed?
 - stabilizing the forward propagation
- Convolution Neural Networks as PDE
 - continuity in feature space
 - allows to interpret and categorize CNN
- Multiscale Parabolic CNNs
 - image classification across scales
 - shallow-to-deep training
- Reversible Hyperbolic CNNs
 - memory-efficient + stable → arbitrarily deep

E Haber, LR
Stable Architectures for Deep Neural Networks.

E Holtham, E Haber, LR
Learning Across Scales.
AAAI, 2018.

B Chang, L Meng, E Holtham, E Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
AAAI, 2018.
Deep Learning meets Optimal Control
Deep Learning Revolution (?)

- Neural Networks with a particular (deep) architecture
- invented in the 1950’s
- able to "learn" complicated patterns from data
- applications: image classification, face recognition, segmentation, driverless cars, ...
- recent success fueled by: massive data sets, computing power
- A few recent quotes:
 - Apple Is Bringing the AI Revolution to Your iPhone, WIRED ’16
 - Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev ’17
Deep Learning Revolution (?)

- Neural Networks with a particular (deep) architecture
- invented in the 1950’s
- able to "learn" complicated patterns from data
- applications: image classification, face recognition, segmentation, driverless cars, …
- recent success fueled by: massive data sets, computing power
- A few recent quotes:
 - Apple Is Bringing the AI Revolution to Your iPhone, WIRED ’16
 - Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev ’17

\[Y_{j+1} = \sigma(K_j Y_j + b_j) \]
Supervised Learning using Deep Neural Networks

Given training data, Y_0, and labels, C, find **transformation parameters** (K, b) and **classification weights** (W, μ) such that the DNN predicts the data-label relationship (and generalizes to new data), by solving

$$\begin{align*}
\text{minimize}_{K,b,W,\mu} & \quad \text{loss}[g(WY_N + \mu), C] + \text{regularizer}[K, b, W, \mu] \\
\text{subject to} & \quad Y_{j+1} = \text{activation}(K_jY_j + b_j), \quad \forall j = 0, \ldots, N - 1
\end{align*}$$
Supervised Learning using Deep Neural Networks

Supervised Deep Learning Problem

Given training data, Y_0, and labels, C, find transformation parameters (K, b) and classification weights (W, μ) such that the DNN predicts the data-label relationship (and generalizes to new data), by solving

$$\min_{K, b, W, \mu} \text{loss}\left[g(WY_N + \mu), C \right] + \text{regularizer}[K, b, W, \mu]$$

subject to

$$Y_{j+1} = \text{activation}(K_j Y_j + b_j), \quad \forall j = 0, \ldots, N - 1$$
Supervised Learning using Deep Neural Networks

Supervised Deep Learning Problem

Given training data, Y_0, and labels, C, find transformation parameters (K, b) and classification weights (W, μ) such that the DNN predicts the data-label relationship (and generalizes to new data), by solving

$$\min_{K, b, W, \mu} \text{loss}[g(WY_N + \mu), C] + \text{regularizer}[K, b, W, \mu]$$

subject to

$$Y_{j+1} = \text{activation}(K_jY_j + b_j), \quad \forall j = 0, \ldots, N - 1$$
Supervised Learning using Deep Neural Networks

Supervised Deep Learning Problem

Given training data, Y_0, and labels, C, find transformation parameters (K, b) and classification weights (W, μ) such that the DNN predicts the data-label relationship (and generalizes to new data), by solving

$$\begin{align*}
\text{minimize}_{K, b, W, \mu} & \quad \text{loss}[g(WY_N + \mu), C] + \text{regularizer}[K, b, W, \mu] \\
\text{subject to} & \quad Y_{j+1} = \text{activation}(K_jY_j + b_j), \quad \forall j = 0, \ldots, N - 1
\end{align*}$$
Supervised Deep Learning Problem

Given training data, \(Y_0 \), and labels, \(C \), find transformation parameters \((K, b)\) and classification weights \((W, \mu)\) such that the DNN predicts the data-label relationship (and generalizes to new data), by solving

\[
\begin{align*}
\text{minimize}_{K, b, W, \mu} & \quad \text{loss}\left[g\left(WY_N + \mu\right), C\right] + \text{regularizer}\left[K, b, W, \mu\right] \\
\text{subject to} & \quad Y_{j+1} = \text{activation}(K_jY_j + b_j), \quad \forall j = 0, \ldots, N - 1
\end{align*}
\]
Deep Residual Neural Networks

Award-winning forward propagation

\[Y_{j+1} = Y_j + K_{j,2} \sigma (K_{j,1} Y_j + b_j), \quad \forall j = 0, 1, \ldots, N - 1. \]

K. He, X. Zhang, S. Ren, and J. Sun

Deep residual learning for image recognition.
Deep Residual Neural Networks

Award-winning forward propagation

\[Y_{j+1} = Y_j + h K_{j,2} \sigma (K_{j,1} Y_j + b_j), \quad \forall j = 0, 1, \ldots, N - 1. \]

K. He, X. Zhang, S. Ren, and J. Sun
Deep residual learning for image recognition.
Deep Residual Neural Networks

Award-winning forward propagation

\[Y_{j+1} = Y_j + hK_{j,2}\sigma(K_{j,1}Y_j + b_j), \quad \forall \ j = 0, 1, \ldots, N - 1. \]

ResNet is forward Euler discretization of

\[
\begin{align*}
\partial_t y(t, K, b, y_0) &= K_2(t)\sigma(K_1(t)y(t, K, b, y_0) + b(t)), \\
y(0, K, b, y_0) &= y_0.
\end{align*}
\]

K. He, X. Zhang, S. Ren, and J. Sun

Deep residual learning for image recognition.
Deep Residual Neural Networks

Award-winning forward propagation

\[Y_{j+1} = Y_j + hK_{j,2}\sigma(K_{j,1}Y_j + b_j), \quad \forall j = 0, 1, \ldots, N - 1. \]

ResNet is forward Euler discretization of

\[
\begin{align*}
\partial_t y(t, K, b, y_0) &= K_2(t)\sigma(K_1(t)y(t, K, b, y_0) + b(t)), \\
y(0, K, b, y_0) &= y_0.
\end{align*}
\]

deep learning \iff trajectory problem, image registration, mass transport, \ldots

K. He, X. Zhang, S. Ren, and J. Sun
Deep residual learning for image recognition.
Deep Residual Neural Networks

Award-winning forward propagation

\[
Y_{j+1} = Y_j + hK_{j,2}\sigma(K_{j,1}Y_j + b_j), \quad \forall j = 0, 1, \ldots, N - 1.
\]

ResNet is forward Euler discretization of

\[
\partial_t y(t, K, b, y_0) = K_2(t)\sigma(K_1(t)y(t, K, b, y_0) + b(t)), \quad y(0, K, b, y_0) = y_0.
\]

deep learning \leftrightarrow \text{trajectory problem, image registration, mass transport, \ldots}

In short, write ResNets as

\[
\partial_t y(t, \theta(t), y_0) = f(y, \theta(t)), \quad y(0, \theta, y_0) = y_0
\]

K. He, X. Zhang, S. Ren, and J. Sun

Deep residual learning for image recognition.

Supervised Deep Learning Problem

Given training data, Y_0, and labels, C, find network parameters θ and classification weights W, μ such that the DNN predicts the data-label relationship (and generalizes to new data), i.e., solve

$$\begin{align*}
\underset{\theta, W, \mu}{\text{minimize}} & \quad \text{loss}[g(WY(T, \theta, Y_0) + \mu), C] + \text{regularizer}[\theta, W, \mu] \\
\text{subject to} & \quad \partial_t Y(t, \theta(t), Y_0) = f(Y(t), \theta(t), b(t)), \quad Y(0, \theta, Y_0) = Y_0.
\end{align*}$$
Optimal Control Framework for Deep Learning

Supervised Deep Learning Problem

Given training data, Y_0, and labels, C, find network parameters θ and classification weights W, μ such that the DNN predicts the data-label relationship (and generalizes to new data), i.e., solve

$$\min_{\theta, W, \mu} \text{loss}[g(WY(T, \theta, Y_0) + \mu), C] + \text{regularizer}[\theta, W, \mu]$$
Optimal Control Approaches to Deep Learning

Deep Learning ↔ trajectory problem.

- use for analysis and new algorithms
- invent your own architecture

E. Haber, LR
Stable Architectures for Deep Neural Networks.
Inverse Problems, accepted 2017.

Weinan E
A Proposal on Machine Learning via Dynamical Systems.
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, $\sigma = \tanh$

input features + labels
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, $\sigma = \tanh$

$\approx 100\%$ validation accuracy
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, $\sigma = \tanh$

1\% \approx 100% validation accuracy
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, $\sigma = \text{tanh}$

\begin{itemize}
 \item input features + labels
 \item propagated features
 \item classification result
\end{itemize}

$\approx 100\%$ validation accuracy
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, \(\sigma = \text{tanh} \)

\[\text{input features} + \text{labels} \quad \overset{\text{propagated features}}{\rightarrow} \quad \text{classification result} \]

\(^1 \approx 100\% \text{ validation accuracy} \]
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, $\sigma = \tanh$

$\approx 100\%$ validation accuracy
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, $\sigma = \tanh$

\[\text{input features + labels} \quad \text{propagated features} \quad \text{classification result}^1\]

\[1 \approx 100\% \text{ validation accuracy}\]
Blessing of Dimensionality (or Width)

Setup: ResNN, 9 fully connected single layers, $\sigma = \tanh$

- Increase the dimension (width) \Rightarrow no need to change topology!

$^1 \approx 100\%$ validation accuracy
Stability and Well-Posedness
Stability of Continuous Forward Propagation

Interpret ResNet as discretization of initial value problem

\[\frac{\partial}{\partial t} y(t, K, b, y) = \sigma(K(t)y(t, K, b, y) + b(t)) \]

\[y(0, K, b, y) = y. \]
Stability of Continuous Forward Propagation

Interpret ResNet as discretization of initial value problem

\[
\partial_t y(t, K, b, y) = \sigma(K(t)y(t, K, b, y) + b(t))
\]

\[
y(0, K, b, y) = y.
\]

IVP is stable if for any \(\mathbf{v} \in \mathbb{R}^n \)

\[
\|y(T, K, b, y) - y(T, K, b, y + \epsilon \mathbf{v})\|^2 = \mathcal{O}(\epsilon).
\]
Stability of Continuous Forward Propagation

Interpret ResNet as discretization of initial value problem

\[
\partial_t y(t, K, b, y) = \sigma(K(t)y(t, K, b, y) + b(t))
\]

\[
y(0, K, b, y) = y.
\]

IVP is stable if for any \(v \in \mathbb{R}^n \)

\[
\|y(T, K, b, y) - y(T, K, b, y + \epsilon v)\|^2 = O(\epsilon).
\]

idea: ensure stability by design / constraints on \(K, b \)
Fact: The ODE $y'(t) = f(y)$ is stable if the real parts of the eigenvalues of the Jacobian J are non-positive.
For non-autonomous ODEs we also need that J changes slowly in time.
Rigorous argument using framework of kinematic eigenvalues.
Stability of Forward Propagation

Fact: The ODE \(y'(t) = f(y) \) is stable if the real parts of the eigenvalues of the Jacobian \(J \) are non-positive. For non-autonomous ODEs we also need that \(J \) changes slowly in time. Rigorous argument using framework of kinematic eigenvalues. For the ResNet

\[
J(t) = \text{diag}(\sigma'(K(t)Y(t) + b(t)))K(t).
\]
Fact: The ODE $y'(t) = f(y)$ is stable if the real parts of the eigenvalues of the Jacobian J are non-positive.
For non-autonomous ODEs we also need that J changes slowly in time. Rigorous argument using framework of kinematic eigenvalues.
For the ResNet

$$J(t) = \text{diag}(\sigma'(K(t)Y(t) + b(t)))K(t).$$

If activation is monotonically increasing, $\text{real}(\text{eig}(K(t))) \leq 0$ sufficient.
Symplectic Integration

Hamiltonian-inspired neural networks (Verlet integration)

\[Z_{j+\frac{1}{2}} = Z_{j-\frac{1}{2}} - h\sigma (K_j Y_j + b_j) \]

\[Y_{j+1} = Y_j + h\sigma \left(K_j^T Z_{j+\frac{1}{2}} + b_j \right) \]
Symplectic Integration

Hamiltonian-inspired neural networks (Verlet integration)

\[
Z_{j+\frac{1}{2}} = Z_{j-\frac{1}{2}} - h\sigma (K_j Y_j + b_j)
\]

\[
Y_{j+1} = Y_j + h\sigma (K_j^\top Z_{j+\frac{1}{2}} + b_j)
\]

Necessary Conditions for Generalization

- continuous forward propagation stable when \(\text{real}(\text{eig}(K)) \leq 0 \)
- learning problem well-posed when \(\text{real}(\text{eig}(K)) \approx 0 \)
- stable scheme for discrete forward propagation and \(h \) ”small enough”
Symplectic Integration

Hamiltonian-inspired neural networks (Verlet integration)

\[Z_{j+\frac{1}{2}} = Z_{j-\frac{1}{2}} - h\sigma (K_j Y_j + b_j) \]

\[Y_{j+1} = Y_j + h\sigma (K_j^T Z_{j+\frac{1}{2}} + b_j) \]

Necessary Conditions for Generalization

- continuous forward propagation stable when \(\text{real}(\text{eig}(K)) \leq 0 \)
- learning problem well-posed when \(\text{real}(\text{eig}(K)) \approx 0 \)
- stable scheme for discrete forward propagation and \(h \) ”small enough”

Simple explanation of (and cure for) exploding and vanishing gradients!

- Y. Bengio, P. Simard, P. Frasconi
 Learning Long-Term Dependencies with Gradient Descent Is Difficult
Example: Impact of Network Depth

classification problem generated from peaks in MATLAB®

data setup

- 2,000 points in 2D, 5 classes
- Residual Neural Network
- \(\text{tanh} \) activation, softmax classifier
- multilevel: 32 layers → 64 layers

compare three configurations

1. “deep”: \(T = 5 \) (3rd order multistep)
2. “medium”: \(T = 2 \) (1st order Verlet)
3. “shallow”: \(T = 0.2 \) (3rd order multistep)

Q: how does learning performance compare?
Example: Impact of Network Depth - Convergence

- **deep, ab3 (T = 5)**

 - Objective function
 - Validation accuracy

 Graphs comparing 32 layers vs. 64 layers for objective function and validation accuracy.
Example: Impact of Network Depth - Convergence

deep, ab3 \((T = 5)\)

- Objective function
 - 32 layers
 - 64 layers

- Validation accuracy
 - 32 layers
 - 64 layers

medium, Verlet \((T = 2)\)

- Objective function
 - 32 layers
 - 64 layers

- Validation accuracy
 - 32 layers
 - 64 layers
Example: Impact of Network Depth - Convergence

- **Deep**, \(T = 5 \)
 - 32 layers
 - 64 layers
 - Objective function and validation accuracy

- **Medium**, Verlet, \(T = 2 \)
 - 32 layers
 - 64 layers
 - Objective function and validation accuracy

- **Shallow**, \(T = 0.2 \)
 - 32 layers
 - 64 layers
 - Objective function and validation accuracy
Example: Impact of Network Depth - Dynamics

deep, $ab3 (T = 5)$

t=0.16

medium, Verlet ($T = 2$)

t=0.08

shallow, $ab3 (T = 0.2)$

t=0.00
Example: Impact of Network Depth - Dynamics

- **deep**, ab3 \((T = 5)\)
- **medium**, Verlet \((T = 2)\)
- **shallow**, ab3 \((T = 0.2)\)

<table>
<thead>
<tr>
<th>Title</th>
<th>Intro</th>
<th>Stab</th>
<th>PDE</th>
<th>Scale</th>
<th>Hyper</th>
<th>Σ</th>
</tr>
</thead>
</table>

- **t=0.16**
- **t=0.08**
- **t=0.00**
PDE-Interpretation of Convolution Neural Networks
Convolutions and PDEs

Let y be of 1D grid function $y \leftrightarrow y$ (grid: n cells of width $h_x = 1/n$)

$$K(\theta)y = [\theta_1 \theta_2 \theta_3] \ast y$$
Convolutions and PDEs

Let y be a 1D grid function $y \leftrightarrow y$ (grid: n cells of width $h_x = 1/n$)

$$K(\theta)y = [\theta_1 \ \theta_2 \ \theta_3] \ast y = \left(\frac{\beta_4}{4} [1 \ 2 \ 1] + \frac{\beta_2}{2h_x} [-1 \ 0 \ 1] + \frac{\beta_3}{h_x^2} [-1 \ 2 \ -1] \right) \ast y$$

where the coefficients $\beta_1, \beta_2, \beta_3$ satisfy

$$\begin{pmatrix}
1/4 & -1/(2h_x) & -1/h_x^2 \\
1/2 & 0 & 2/h_x^2 \\
1/4 & 1/(2h_x) & -1/h_x^2
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_3
\end{pmatrix}
= \begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix}.$$
Convolutions and PDEs

Let y be of 1D grid function $y \leftrightarrow y$ (grid: n cells of width $h_x = 1/n$)

$$K(\theta)y = [\theta_1 \ \theta_2 \ \theta_3] \ast y = \left(\frac{\beta_4}{4}[1 \ 2 \ 1] + \frac{\beta_2}{2h_x}[-1 \ 0 \ 1] + \frac{\beta_3}{h_x^2}[-1 \ 2 \ -1]\right) \ast y$$

where the coefficients $\beta_1, \beta_2, \beta_3$ satisfy

$$\begin{pmatrix}
\frac{1}{4} & -1/(2h_x) & -1/h_x^2 \\
1/2 & 0 & 2/h_x^2 \\
1/4 & 1/(2h_x) & -1/h_x^2
\end{pmatrix}
\begin{pmatrix}
\beta_1 \\
\beta_2 \\
\beta_3
\end{pmatrix} =
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix}.$$

In the limit $h_x \to 0$ this gives

$$K(\theta(t)) = \beta_1(t) + \beta_2(t)\partial_x + \beta_3(t)\partial_x^2.$$
Convolutions and PDEs

Let \(y \) be of 1D grid function \(y \leftrightarrow y \) (grid: \(n \) cells of width \(h_x = 1/n \))

\[
K(\theta)y = [\theta_1 \theta_2 \theta_3] * y = \left(\frac{\beta_4}{4} [1 \ 2 \ 1] + \frac{\beta_2}{2h_x} [-1 \ 0 \ 1] + \frac{\beta_3}{h_x^2} [-1 \ 2 \ -1] \right) * y
\]

where the coefficients \(\beta_1, \beta_2, \beta_3 \) satisfy

\[
\begin{pmatrix}
 1/4 & -1/(2h_x) & -1/h_x^2 \\
 1/2 & 0 & 2/h_x^2 \\
 1/4 & 1/(2h_x) & -1/h_x^2
\end{pmatrix}
\begin{pmatrix}
 \beta_1 \\
 \beta_2 \\
 \beta_3
\end{pmatrix}
= \begin{pmatrix}
 \theta_1 \\
 \theta_2 \\
 \theta_3
\end{pmatrix}.
\]

In the limit \(h_x \to 0 \) this gives

\[
K(\theta(t)) = \beta_1(t) + \beta_2(t) \partial_x + \beta_3(t) \partial_x^2.
\]

Convolution operator \(K \) is linear combination of differential operators
Parabolic CNN

In original Residual Net choose $K_2 = -K_1^T = K^T$. This gives parabolic PDE

$$Y_t = -K(t)^T \sigma(K(t)Y + b(t)), \quad Y(0) = Y_0$$
Parabolic CNN

In original Residual Net choose $K_2 = -K_1^T = K^T$. This gives parabolic PDE

$$Y_t = -K(t)^T \sigma(K(t)Y + b(t)), \quad Y(0) = Y_0$$

Jacobian

$$J(t) = -K(t)^T \text{diag} \left(\sigma'(K(t)Y + b(t)) \right) K(t)$$

symmetric and negative definite ($\sigma' \geq 0$) \Rightarrow stable if K, b do not change too quickly.
Parabolic CNN

In original Residual Net choose $K_2 = -K_1^T = K^T$. This gives parabolic PDE

$$Y_t = -K(t)^T \sigma(K(t)Y + b(t)), \quad Y(0) = Y_0$$

Jacobian

$$J(t) = -K(t)^T \text{diag} \left(\sigma'(K(t)Y + b(t)) \right) K(t)$$

symmetric and negative definite ($\sigma' \geq 0$) \Rightarrow stable if K, b do not change too quickly. Use forward Euler discretization with h small enough

$$Y_{j+1} = Y_j - hK_j^T \sigma(K_jY + b_j), \quad j = 0, 1, \ldots, N - 1$$

Similar to anisotropic diffusion (popular in image processing)

Y. Chen, T. Pock

Trainable Nonlinear Reaction Diffusion.

Hamiltonian CNN

Introducing auxiliary variable Z, consider dynamics

$$
\begin{align*}
\partial_t Y(t) &= K_1^T(t)\sigma(K_1(t)Z(t) + b_1(t)), \\
\partial_t Z(t) &= -K_2^T(t)\sigma(K_2(t)Y(t) + b_2(t)).
\end{align*}
$$

(Can be shown that eigenvalues of Jacobian are all imaginary \Rightarrow stability when K_1, K_2, b_1, b_2 change slowly in time)
Introducing auxiliary variable Z, consider dynamics

\[
\begin{align*}
\partial_t Y(t) &= K_1^T(t) \sigma(K_1(t)Z(t) + b_1(t)), \\
\partial_t Z(t) &= -K_2^T(t) \sigma(K_2(t)Y(t) + b_2(t)).
\end{align*}
\]

In matrix form this is

\[
\begin{pmatrix}
\partial_t Y \\
\partial_t Z
\end{pmatrix} = \begin{pmatrix}
K_1^T & 0 \\
0 & -K_2^T
\end{pmatrix} \sigma\left(\begin{pmatrix}
0 & K_1 \\
K_2 & 0
\end{pmatrix} \begin{pmatrix}
Y \\
Z
\end{pmatrix} + \begin{pmatrix}
b_1 \\
b_2
\end{pmatrix} \right).
\]

(Can be shown that eigenvalues of Jacobian are all imaginary \sim stability when K_1, K_2, b_1, b_2 change slowly in time)
Hamiltonian CNN

Introducing auxiliary variable Z, consider dynamics

$$
\begin{align*}
\partial_t Y(t) &= K_1^T(t) \sigma(K_1(t)Z(t) + b_1(t)), \\
\partial_t Z(t) &= -K_2^T(t) \sigma(K_2(t)Y(t) + b_2(t)).
\end{align*}
$$

In matrix form this is

$$
\begin{pmatrix}
\partial_t Y \\
\partial_t Z
\end{pmatrix} =
\begin{pmatrix}
K_1^T & 0 \\
0 & -K_2^T
\end{pmatrix} \sigma
\begin{pmatrix}
0 & K_1 \\
K_2 & 0
\end{pmatrix}
\begin{pmatrix}
Y \\
Z
\end{pmatrix}
+ \begin{pmatrix}
b_1 \\
b_2
\end{pmatrix}.
$$

(Can be shown that eigenvalues of Jacobian are all imaginary \implies stability when K_1, K_2, b_1, b_2 change slowly in time)

Discretize using Verlet method

$$
\begin{align*}
y_{j+1} &= y_j + h K_{j1}^T \sigma(K_{j1} z_j + b_{j1}), \\
z_{j+1} &= z_j - h K_{j2}^T \sigma(K_{j2} y_{j+1} + b_{j2}).
\end{align*}
$$
Second-Order Network

Consider second-order forward dynamics

$$\partial_{tt} Y = -K(t)^\top \sigma(K(t)Y + b(t))$$

And their Leapfrog discretization

$$Y_{j+1} = 2Y_j - Y_{j-1} - h^2K_j^\top \sigma(K_jY + b_j)$$

Similar to: Full Waveform Inversion, Ultrasound, ...
Some Challenges in CNN

Computations

- note that networks have a widths and depth
- Toy example: width 16, depth 20 (time steps).
Some Challenges in CNN

Computations

- note that networks have a widths and depth
- Toy example: width 16, depth 20 (time steps).

 Forward propagation: 5,120 2D-convs/image
Some Challenges in CNN

Computations

- note that networks have a widths and depth
- Toy example: width 16, depth 20 (time steps).

 \textbf{Forward propagation: 5,120 2D-convs/image}
Some Challenges in CNN

Computations
- note that networks have a widths and depth
- Toy example: width 16, depth 20 (time steps).

 Forward propagation: 5,120 2D-convolutions/image

Memory Consumption
- adjoint equations (backpropagation) need intermediate states (hidden features)
- Toy example (continued): training data is 5k images with 32×32 pixels.
Some Challenges in CNN

Computations
- note that networks have a widths and depth
- Toy example: width 16, depth 20 (time steps).
 \textbf{Forward propagation: 5,120 2D-convs/image}

Memory Consumption
- adjoint equations (backpropagation) need intermediate states (hidden features)
- Toy example (continued): training data is 5k images with 32×32 pixels.
 \textbf{Storage (just features): 130 GB (double) or 65 GB (single).}
Some Challenges in CNN

Computations
- note that networks have a widths and depth
- Toy example: width 16, depth 20 (time steps).
 Forward propagation: 5,120 2D-convs/image

Memory Consumption
- adjoint equations (backpropagation) need intermediate states (hidden features)
- Toy example (continued): training data is 5k images with 32 × 32 pixels.
 Storage (just features): 130 GB (double) or 65 GB (single).

Architecture Design & Interpretation
- CNN should be easy to train and generalize well
- CNN should be difficult to fool (adversarial)
- Can we understand the reasoning of a CNN?
Some Challenges in CNN

Computations
- note that networks have a widths and depth
- Toy example: width 16, depth 20 (time steps).
 Forward propagation: 5,120 2D-convs/image

Memory Consumption
- adjoint equations (backpropagation) need intermediate states (hidden features)
- Toy example (continued): training data is 5k images with 32 × 32 pixels.
 Storage (just features): 130 GB (double) or 65 GB (single).

Architecture Design & Interpretation
- CNN should be easy to train and generalize well
- CNN should be difficult to fool (adversarial)
- Can we understand the reasoning of a CNN?

Pei et al., DeepXplore, 2017
Parabolic Networks
Parabolic Residual Neural Networks

Recall the decay property of heat equation. Example:

$$\partial_t y(t, x) = -\partial_{xx} y(t, x), \quad \text{+ initial + boundary cond.}$$
Recall the decay property of heat equation. Example:

$$\partial_t y(t, x) = -\partial_{xx} y(t, x), \quad + \text{initial + boundary cond.}$$

Some consequences for learning

- forward propagation is asymptotically stable (if kernels constant in time)
- network is robust against perturbation of inputs (adversarial)
- learning problem ill-posed (\rightsquigarrow inverse heat equation)
- numerical methods for parabolic include multiscale, multilevel, ROM, ...
Multi-Resolution Learning

level 1, 12×12

Restrict the images n times

$\theta^0, W^0, \mu^0 \leftarrow$ random initialization

for $j = 1 : n$ do

optimize with data on level k starting from $\theta^{j-1}, W^{j-1}, \mu^{k-1}$

obtain θ^*, W^*, μ^*

$\theta^j \leftarrow$ prolongate θ^*

$W^j \leftarrow$ interpolate W^*
Multi-Resolution Learning

Restrict the images n times

$\theta^0, W^0, \mu^0 \leftarrow$ random initialization

for $j = 1 : n$ do

optimize with data on level k starting from $\theta^{j-1}, W^{j-1}, \mu^{k-1}$

obtain θ^*, W^*, μ^*

$\theta^j \leftarrow$ prolongate θ^*

$W^j \leftarrow$ interpolate W^*
Multi-Resolution Learning

Restrict the images n times

$\theta^0, W^0, \mu^0 \leftarrow$ random initialization

for $j = 1 : n$ do

 optimize with data on level k starting from $\theta^{j-1}, W^{j-1}, \mu^{k-1}$

 obtain θ^*, W^*, μ^*

 $\theta^j \leftarrow$ prolongate θ^*

 $W^j \leftarrow$ interpolate W^*
Multi-Resolution Learning

Restrict the images n times

$\theta^0, W^0, \mu^0 \leftarrow$ random initialization

for $j = 1 : n$ do

- optimize with data on level k starting from $\theta^{j-1}, W^{j-1}, \mu^{k-1}$
- obtain θ^*, W^*, μ^*
- $\theta^j \leftarrow$ prolongate θ^*
- $W^j \leftarrow$ interpolate W^*
Multi-Resolution Learning

Restrict the images n times

$\theta^0, W^0, \mu^0 \leftarrow$ random initialization

for $j = 1 : n$ do

optimize with data on level k starting from $\theta^{j-1}, W^{j-1}, \mu^{k-1}$

obtain θ^*, W^*, μ^*

$\theta^j \leftarrow$ prolongate θ^*

$W^j \leftarrow$ interpolate W^*

How to prolongate the kernels?
Galerkin Projection of Convolution Kernels

\[K_H = RK_hP, \]

where

- \(K_h \): fine mesh operator (given)
- \(R \): restriction (e.g., averaging)
- \(P \): prolongation (e.g., interpolation)

Remarks:

- Galerkin: \(R = \gamma P^\top \)
- Coarse \(\rightarrow \) Fine: unique if kernel size constant.
- Only small linear solve required.
Galerkin Projection of Convolution Kernels

\[K_H = R K_h P, \]

where

- \(K_h \) fine mesh operator (given)
- \(R \) restriction (e.g., averaging)
- \(P \) prolongation (e.g., interpolation)
Galerkin Projection of Convolution Kernels

\[K_H = RK_h P, \]

where

- \(K_h \): fine mesh operator (given)
- \(R \): restriction (e.g., averaging)
- \(P \): prolongation (e.g., interpolation)

Remarks:

- Galerkin: \(R = \gamma P^\top \)
- Coarse \(\rightarrow \) Fine: unique if kernel size constant.
- only small linear solve required
Example: Multiresolution Learning

data
- 60,000 gray-scale images 18×18
- Residual Neural Network, width 6
- 2D convolution layers, fully connected
- \texttt{tanh} activation, softmax classifier
Example: Multiresolution Learning

data
- 60,000 gray-scale images 18×18
- Residual Neural Network, width 6
- 2D convolution layers, fully connected
- tanh activation, softmax classifier

multilevel experiments
1. train on fine \rightarrow classify coarse:
 - 84.1% vs. 94.9%
 - (no restriction) (with restriction)
Example: Multiresolution Learning

data
- 60,000 gray-scale images 18×18
- Residual Neural Network, width 6
- 2D convolution layers, fully connected
- \tanh activation, softmax classifier

multilevel experiments
1. train on fine \rightarrow classify coarse:
 - 84.1\% vs. 94.9\%
 (no restriction) (with restriction)
2. train on coarse \rightarrow classify fine:
 - 61.0\% vs. 91.0\%
 (no prolongation) (with prolongation)
Example: Multilevel Learning ImageNet-10

ImageNet-10
- 13k natural images
 - 224 × 224
- 10 sub-categories
- Residual Neural Network, width 64, depth 34
- 2D convolution layers, fully connected
Example: Multilevel Learning ImageNet-10

ImageNet-10

- 13k natural images, 224 × 224
- 10 sub-categories
- Residual Neural Network, width 64, depth 34
- 2D convolution layers, fully connected

<table>
<thead>
<tr>
<th></th>
<th>fine-scale only</th>
<th>coarse-to-fine</th>
</tr>
</thead>
<tbody>
<tr>
<td>runtime [sec]</td>
<td>59,122 ± 7,540</td>
<td>43,882 ± 3,476</td>
</tr>
<tr>
<td>validation acc.</td>
<td>76.47 ± 0.93%</td>
<td>82.67 ± 0.93%</td>
</tr>
</tbody>
</table>
Hyperbolic Networks
Recall the reversibility of hyperbolic equations. Example:

\[\partial_{tt} y(t, x) = \partial_{xx} y(t, x), \quad + \text{initial + boundary cond.} \]
Recall the reversibility of hyperbolic equations. Example:
\[\partial_{tt}y(t, x) = \partial_{xx}y(t, x), \quad + \text{initial } + \text{boundary cond.} \]

Similar property recently discovered for residual networks

\[\begin{align*}
y_{k+1} &= y_k + F(x_k) \\
x_{k+1} &= x_k + G(y_k)
\end{align*} \quad \rightarrow \quad \begin{align*}
x_{k-1} &= x_k - G(y_k) \\
y_{k-1} &= y_k - F(x_k)
\end{align*} \]

useful for adjoint computations (backpropagation)

B.D. Nguyen, G.A. McMechan
Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration.

A.N. Gomez, M. Ren, R. Urtasun, R.B. Grosse
The Reversible Residual Network: Backpropagation Without Storing Activations.
Hyperbolic Residual Neural Networks

Recall the reversibility of hyperbolic equations. Example:

\[\partial_{tt} y(t, x) = \partial_{xx} y(t, x), \quad + \text{initial + boundary cond.} \]

Similar property recently discovered for residual networks

\[y_{k+1} = y_k + F(x_k) \quad \Rightarrow \quad x_{k-1} = x_k - G(y_k) \]

\[x_{k+1} = x_k + G(y_k) \quad \Rightarrow \quad y_{k-1} = y_k - F(x_k) \]

useful for adjoint computations (backpropagation)

Reversible ResNets: ↓↓↓ memory ↑ computation

B.D. Nguyen, G.A. McMechan

Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration.

Geophysics, 2014.

A.N. Gomez, M. Ren, R. Urtasun, R.B. Grosse

The Reversible Residual Network: Backpropagation Without Storing Activations.

arXiv, 2017.
Reversible Hamiltonian Neural Networks

Forward propagation in double-layer Hamiltonian

\[Y_{j+1} = Y_j + hK_{j1}^T \sigma(K_{j1}Z_j + b_{j1}), \]
\[Z_{j+1} = Z_j - hK_{j2}^T \sigma(K_{j2}Y_{j+1} + b_{j2}). \]

Recall: Antisymmetric structure gives stability (when parameters change slowly).

A. Mahendran, A Vedaldi

Understanding deep image representations by inverting them.

CVPR, 2015.
Reversible Hamiltonian Neural Networks

Forward propagation in double-layer Hamiltonian

\[Y_{j+1} = Y_j + hK_{j1}^T \sigma(K_{j1}Z_j + b_{j1}), \]
\[Z_{j+1} = Z_j - hK_{j2}^T \sigma(K_{j2}Y_{j+1} + b_{j2}). \]

Recall: Antisymmetric structure gives stability (when parameters change slowly).

Clearly, given \(Y_N, Y_{N-1} \) and \(Z_N, Z_{N-1} \) dynamics can be computed backwards:

\[Z_j = Z_{j+1} + hK_{j2}^T \sigma(K_{j2}Y_{j+1} + b_{j2}) \]
\[Y_j = Y_{j+1} - hK_{j1}^T \sigma(K_{j1}Z_j + b_{j1}), \]

A. Mahendran, A Vedaldi
Understanding deep image representations by inverting them.
CVPR, 2015.
Reversible Hamiltonian Neural Networks

Forward propagation in double-layer Hamiltonian

\[Y_{j+1} = Y_j + hK_{j1}^T \sigma(K_{j1}Z_j + b_{j1}), \]
\[Z_{j+1} = Z_j - hK_{j2}^T \sigma(K_{j2}Y_{j+1} + b_{j2}). \]

Recall: Antisymmetric structure gives stability (when parameters change slowly).

Clearly, given \(Y_N, Y_{N-1} \) and \(Z_N, Z_{N-1} \) dynamics can be computed backwards:

\[Z_j = Z_{j+1} + hK_{j2}^T \sigma(K_{j2}Y_{j+1} + b_{j2}) \]
\[Y_j = Y_{j+1} - hK_{j1}^T \sigma(K_{j1}Z_j + b_{j1}), \]

Possible to recompute weights, \(\uparrow50\% \) computation costs, but large memory savings + stability

A. Mahendran, A Vedaldi
Understanding deep image representations by inverting them.
CVPR, 2015.

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
Hamiltonian Reversible STL-10

Data:
- color images, 96×96
- 10 classes
- 5k training images
- 8k test images
Hamiltonian Reversible STL-10

Data:
- color images, 96×96
- 10 classes
- 5k training images
- 8k test images

Test Accuracy for our networks:
- Hamiltonian: 85.5%
- Midpoint: 84.6%
- Second Order: 83.7%
Hamiltonian Reversible STL-10

Data:
- color images, 96 × 96
- 10 classes
- 5k training images
- 8k test images

Test Accuracy for our networks:
- Hamiltonian: 85.5%
- Midpoint: 84.6%
- Second Order: 83.7%

Some Benchmark Results:

<table>
<thead>
<tr>
<th></th>
<th>Google</th>
<th>Intel</th>
<th>Chinese UHK</th>
<th>Nvidia</th>
<th>Facebook</th>
<th>Xtract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td>2015</td>
<td>2016</td>
<td>2017</td>
</tr>
<tr>
<td>Accuracy</td>
<td>70.2%</td>
<td>72.8%</td>
<td>73.15%</td>
<td>74.10%</td>
<td>74.33%</td>
<td>85.5%</td>
</tr>
</tbody>
</table>
Experiment: Stability and Generalization

Goal: Compare efficiency of reversible Hamiltonian CNN to ResNN

CIFAR10 (total: 50k images)
Experiment: Stability and Generalization

Goal: Compare efficiency of reversible Hamiltonian CNN to ResNN

CIFAR10 (total: 50k images)
STL10 (total: 5k images)
Experiment: Stability and Generalization

Goal: Compare efficiency of reversible Hamiltonian CNN to ResNN

CIFAR10 (total: 50k images)
STL10 (total: 5k images)

stability leads to improved generalization
Meganet - A Scientific Computing Approach to DL

- **purpose**: enable scientific computing research in deep learning
- **goal**: better algorithms + implementation → faster, deeper learning
- **launched January 2019 / MATLAB and Julia / MIT license**
- **try it**: http://www.github.com/XtractOpen/
Conclusion
Numerical Methods for Deep Learning

An (almost perfectly) true statement

backpropagation + GPU + \{ TensorFlow \\
Caffe \\
Torch \\
\ldots \\
\} \Rightarrow \text{success}

So, why study numeric methods for deep learning?
Numerical Methods for Deep Learning

An (almost perfectly) true statement

\[
\text{backpropagation} + \text{GPU} + \begin{cases} \text{TensorFlow} \\ \text{Caffe} \\ \text{Torch} \\ \vdots \end{cases} \Rightarrow \text{success}
\]

So, why study numeric methods for deep learning?

Transfer Learning
- DL is similar to path planning, optimal control, differential equations …
Numerical Methods for Deep Learning

An (almost perfectly) true statement

\[
\text{backpropagation + GPU + } \begin{cases}
\text{TensorFlow} \\
\text{Caffe} \\
\text{Torch} \\
\vdots
\end{cases} \Rightarrow \text{success}
\]

So, why study numeric methods for deep learning?

Transfer Learning
- DL is similar to path planning, optimal control, differential equations . . .

Do More With Less
- Better modeling and algorithms \(\Rightarrow\) process more data, use less resources
- How about 3D images and videos?
Numerical Methods for Deep Learning

An (almost perfectly) true statement

\[
\text{backpropagation} + \text{GPU} + \left\{ \begin{array}{c}
\text{TensorFlow} \\
\text{Caffe} \\
\text{Torch} \\
\vdots
\end{array} \right\} \Rightarrow \text{success}
\]

So, why study numeric methods for deep learning?

Transfer Learning
- DL is similar to path planning, optimal control, differential equations . . .

Do More With Less
- Better modeling and algorithms \leadsto process more data, use less resources
- How about 3D images and videos?

Power Of Abstraction
- Use continuous interpretation to design/relate architectures
Numerical Methods for Deep Learning

An (almost perfectly) true statement

\[
\text{backpropagation} + \text{GPU} + \begin{cases}
\text{TensorFlow} \\
\text{Caffe} \\
\text{Torch} \\
\vdots
\end{cases} \Rightarrow \text{success}
\]

So, why study numeric methods for deep learning?

Transfer Learning
- DL is similar to path planning, optimal control, differential equations . . .

Do More With Less
- Better modeling and algorithms \(\leadsto\) process more data, use less resources
- How about 3D images and videos?

Power Of Abstraction
- Use continuous interpretation to design/relate architectures

It’s fun!
- new interdisciplinary courses in computer science + mathematics
Σ: Optimal Control Framework for Deep Learning

Optimal control formulation

- new insights, theory, algorithms

E. Haber, LR
Stable Architectures for Deep Neural Networks.

E. Holtham, E. Haber, LR
Learning Across Scales.
AAAI, 2018.

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
AAAI, 2018.
Σ: Optimal Control Framework for Deep Learning

Optimal control formulation
- new insights, theory, algorithms

Stability and well-posedness
- required for generalization
- continuous propagation \(\rightsquigarrow \) Hamiltonian systems
- discrete propagation (Verlet, Adams-Bashforth, ...)
- example: impact on convergence (no batch normalization!)

E. Haber, LR
Stable Architectures for Deep Neural Networks.

E. Holtham, E. Haber, LR
Learning Across Scales.
AAAI, 2018.

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
AAAI, 2018.
Σ: Optimal Control Framework for Deep Learning

Optimal control formulation
- new insights, theory, algorithms

Stability and well-posedness
- required for generalization
- continuous propagation \(\leadsto \) Hamiltonian systems
- discrete propagation (Verlet, Adams-Bashforth, \ldots)
- example: impact on convergence (no batch normalization!)

Parabolic CNNs
- multiscale and shallow-to-deep training

E. Haber, LR
Stable Architectures for Deep Neural Networks.

E. Holtham, E. Haber, LR
Learning Across Scales.
AAAI, 2018.

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
AAAI, 2018.
Σ: Optimal Control Framework for Deep Learning

Optimal control formulation

▷ new insights, theory, algorithms

Stability and well-posedness

▷ required for generalization
▷ continuous propagation \rightsquigarrow Hamiltonian systems
▷ discrete propagation (Verlet, Adams-Bashforth, ...)
▷ example: impact on convergence (no batch normalization!)

Parabolic CNNs

▷ multiscale and shallow-to-deep training

Hyperbolic CNNs

▷ preserve high-frequency features
▷ can be made reversible

E. Haber, LR
Stable Architectures for Deep Neural Networks.

E. Holtham, E. Haber, LR
Learning Across Scales.
AAAI, 2018.

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
AAAI, 2018.
Σ: Optimal Control Framework for Deep Learning

Optimal control formulation
- new insights, theory, algorithms

Stability and well-posedness
- required for generalization
- continuous propagation \(\sim\) Hamiltonian systems
- discrete propagation (Verlet, Adams-Bashforth, \ldots)
- example: impact on convergence (no batch normalization!)

Parabolic CNNs
- multiscale and shallow-to-deep training

Hyperbolic CNNs
- preserve high-frequency features
- can be made reversible

E. Haber, LR
Stable Architectures for Deep Neural Networks.

E. Holtham, E. Haber, LR
Learning Across Scales.
AAAI, 2018.

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
AAAI, 2018.