CS171 Introduction to Computer Science II
Priority Queues and Binary Heap
Priority Queues

• Need to process/search an item with largest (smallest) key, but not necessarily full sorted order

• Support two operations
 – Remove maximum (or minimum)
 – Insert

• Similar to
 – Stacks (remove newest)
 – Queues (remove oldest)
<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>remove max</td>
<td></td>
<td>P</td>
</tr>
</tbody>
</table>
Applications

• Job scheduling
 – Keys corresponds to priorities of the tasks

• Sorting algorithm
 – Heapsort

• Graph algorithms
 – Shortest path

• Statistics
 – Maintain largest M values in a sequence
Priority queue API

Requirement. *Generic items are comparable.*

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public class MaxPQ<Key extends Comparable<Key>></td>
<td></td>
</tr>
<tr>
<td>MaxPQ()</td>
<td>create a priority queue</td>
</tr>
<tr>
<td>MaxPQ(maxN)</td>
<td>create a priority queue of initial capacity maxN</td>
</tr>
<tr>
<td>void insert(Key v)</td>
<td>insert a key into the priority queue</td>
</tr>
<tr>
<td>Key max()</td>
<td>return the largest key</td>
</tr>
<tr>
<td>Key delMax()</td>
<td>return and remove the largest key</td>
</tr>
<tr>
<td>boolean isEmpty()</td>
<td>is the priority queue empty?</td>
</tr>
<tr>
<td>int size()</td>
<td>number of entries in the priority queue</td>
</tr>
</tbody>
</table>

API for a generic priority queue
Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).
- Fraud detection: isolate $\$\$ transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N items.

```
% more tinyBatch.txt
Turing 6/17/1990  644.08
vonNeumann 3/26/2002 4121.85
Dijkstra  8/22/2007  2678.40
vonNeumann  1/11/1999 4409.74
Dijkstra  11/18/1995  837.42
Hoare 5/10/1993  3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992  4381.21
Turing 1/11/2002  66.10
Thompson 2/27/2000 4747.08
Turing 2/11/1991  2156.86
Hoare 8/12/2003  1025.70
vonNeumann  10/13/1993 2520.97
Dijkstra  9/10/2000  708.95
Turing 10/12/1993  3532.36
Hoare 2/10/2005  4050.20
```

```
% java TopM 5 < tinyBatch.txt
Thompson  2/27/2000 4747.08
vonNeumann  2/12/1994 4732.35
vonNeumann 1/11/1999 4409.74
Hoare  8/18/1992 4381.21
vonNeumann  3/26/2002 4121.85
```

sort key
Possible implementations

• Sorting N items
 – Time: NlogN
 – Space: N

• Elementary PQ - Compare each new key against M largest seen so far
 – Time: NM
 – Space: M

• Using an efficient MaxPQ Implementation
Challenge. Find the largest M items in a stream of N items (N huge, M large).

```java
MinPQ<Transaction> pq = new MinPQ<Transaction>();

while (StdIn.hasNextLine()) {
    String line = StdIn.readLine();
    Transaction item = new Transaction(line);
    pq.insert(item);
    if (pq.size() > M) {
        pq.delMin();
    }
}
```

- Use a min-oriented pq
- Transaction data type is Comparable
- pq contains largest M items

Order of growth of finding the largest M in a stream of N items:

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>sort</td>
<td>$N \log N$</td>
<td>N</td>
</tr>
<tr>
<td>elementary PQ</td>
<td>MN</td>
<td>M</td>
</tr>
<tr>
<td>binary heap</td>
<td>$N \log M$</td>
<td>M</td>
</tr>
<tr>
<td>best in theory</td>
<td>N</td>
<td>M</td>
</tr>
</tbody>
</table>
Implementations

• Elementary representations
 – Unordered array (lazy approach)
 – ordered array (eager approach)

• Efficient implementation
 – Binary heap structure
Priority queue: unordered and ordered array implementation

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
<th>size</th>
<th>contents (unordered)</th>
<th>contents (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
<td>1</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td></td>
<td>2</td>
<td>P Q</td>
<td>P Q</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
<td>3</td>
<td>P Q E</td>
<td>E P Q</td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td></td>
<td>2</td>
<td></td>
<td>E P</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td></td>
<td>3</td>
<td>P E X</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td></td>
<td>4</td>
<td>P E X A</td>
<td>A E P X</td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td></td>
<td>5</td>
<td>P E X A M</td>
<td>A E M P X</td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td></td>
<td>5</td>
<td>P E M A P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td></td>
<td>6</td>
<td>P E M A P L</td>
<td>A E L M P P</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td></td>
<td>7</td>
<td>P E M A P L E</td>
<td>A E E L M P P</td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td></td>
<td>6</td>
<td>E M A P L E</td>
<td>A E E L M P</td>
</tr>
</tbody>
</table>

A sequence of operations on a priority queue
public class UnorderedMaxPQ<Key extends Comparable<Key>>{
 private Key[] pq; // pq[i] = ith element on pq
 private int N; // number of elements on pq

 public UnorderedMaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity]; }

 public boolean isEmpty()
 { return N == 0; }

 public void insert(Key x)
 { pq[N++] = x; }

 public Key delMax()
 {
 int max = 0;
 for (int i = 1; i < N; i++)
 if (less(max, i)) max = i;
 exch(max, N-1);
 return pq[--N];
 }
}
Cost: Unordered and ordered array implementation

• Unordered array
 – insert takes $O(1)$ time since we can insert the item at the end
 – delMax and max take $O(n)$ time since we have to traverse the entire array to find the max

• Ordered array
 – insert takes $O(n)$ time since we have to find the place to insert the item
 – delMax and max take $O(1)$ time, since the max key is at the end
Priority queue elementary implementations

Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>log N</td>
<td>log N</td>
<td>log N</td>
</tr>
</tbody>
</table>
Binary Heap Tree

• A heap is a binary tree storing keys at its nodes and satisfying two properties

 • **Heap-Order:** for every internal node \(v \) other than the root, \(\text{key}(v) \leq \text{key}(\text{parent}(v)) \)

 • **Complete Binary Tree:** let \(h \) be the height of the heap

 - for \(i = 0, \ldots, h - 2 \), there are \(2^i \) nodes of depth \(i \)
 - at depth \(h - 1 \), the internal nodes are to the left of the external nodes
Binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is $\lceil \log_2 N \rceil$.

Pf. Height only increases when N is a power of 2.
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
- Keys in nodes.
- No smaller than children’s keys.

Array representation.
- Take nodes in level order.
- No explicit links needed!
Binary heap properties

Proposition. Largest key is $a[1]$, which is root of binary tree.

Proposition. Can use array indices to move through tree.
- Parent of node at k is at $k/2$.
- Children of node at k are at $2k$ and $2k+1$.
Insert/Remove

• When a node’s key is larger than its parent key
 – Upheap (promote, swim)
• When a node’s key becomes smaller than its children’s keys
 – Downheap (demote, sink)
Promotion in a heap

Scenario. Node's key becomes larger key than its parent's key.

To eliminate the violation:

- Exchange key in node with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

parent of node at k is at k/2

[Diagram of heap with nodes性和 edge labels, highlighting nodes and edges that violate heap order (larger key than parent).]
Insertion in a heap

Insert. Add node at end, then swim it up.

Cost. At most $1 + \lg N$ compares.

```java
public void insert(Key x) {
    pq[++N] = x;
    swim(N);
}
```
Demotion in a heap

Scenario. Node's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:

- Exchange key in node with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k)
{
    while (2*k <= N)
    {
        int j = 2*k;
        if (j < N && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.

Cost. At most $2 \log N$ compares.

```java
public Key delMax()
{
    Key max = pq[1];
    exch(1, N--);
    sink(1);
    pq[N+1] = null;
    return max;
}
```
public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int N;

 public MaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return N == 0; }
 public void insert(Key key)
 { /* see previous code */ }
 public Key delMax()
 { /* see previous code */ }

 private void swim(int k)
 { /* see previous code */ }
 private void sink(int k)
 { /* see previous code */ }

 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j]) < 0; }
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}
Order-of-growth of running time for priority queue with N items

<table>
<thead>
<tr>
<th>implementation</th>
<th>insert</th>
<th>del max</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>ordered array</td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>log N</td>
<td>log N</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>log_d N</td>
<td>d log_d N</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>log N †</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

† amortized