Sequential Minimal Optimization

Sean Thomas
Support Vector Machines

- Original problem (linear, hard margin):
 \[
 \min_{\mathbf{w}, \mathbf{b}} \|\mathbf{w}\| \quad \text{subject to} \quad y_i (\mathbf{w} \cdot \mathbf{x}_i - \mathbf{b}) - 1 \geq 0
 \]
 - where \(\mathbf{w} \cdot \mathbf{x}_i - \mathbf{b} \) is the classifier

- Dual problem (non-linear, soft margin):
 \[
 \max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j k_\lambda (\mathbf{x}_i, \mathbf{x}_j) \alpha_i \alpha_j \quad \text{subject to}
 \]

 - \(0 \leq \alpha_i \leq C \) and \(\sum_{i=1}^{n} y_i \alpha_i = 0 \)
How do they relate?

- *Knowledge Discovery with Support Vector Machines by Lutz Hamel*
 - Great explanation of prerequisites
- Substitute for the margin vector after introducing the Lagrangian multipliers

\[
\bar{w} = \sum_{i=1}^{n} \alpha_i y_i \bar{x}_i
\]
Karush Kuhn Tucker Conditions

- safely classified
 - $\alpha_i = 0 \Rightarrow y_i f(\bar{x}_i) \geq 1$

- in the danger zone
 - $0 < \alpha_i < C \Rightarrow y_i f(\bar{x}_i) = 1$

- incorrectly classified
 - $\alpha_i = C \Rightarrow y_i f(\bar{x}_i) \leq 1$
Sequential Minimal Optimization

 - training a SVM is solving a QP problem
 - breaks problem down into many smallest possible QP problems that can be solved analytically
 - avoids larger numerical QP problems that previous algorithms used

- Implementation used in Weka
 - Look for SMO
Preliminary Results

- Prototype version in R
 - Fairly easy to debug
- First C++ iteration
 - Sparse Vector Implementation
 - Mirrors prototype output
SVM vs. ANN

- ~ 4 hours to understand algorithm
- ~ 8 hours for prototype version
- ~ 8 hours for C++ version

- Days to understand and complete
 - Partly due to inexperience
SVM vs. ANN

- To be determined
 - Hopefully, it will be less of a problem

- Final Product needed
 - Multiple layers
 - Pre-training
 - Data manipulation
SVM vs. ANN

- Firm Mathematical Background
 - Convex function
 - Theory of kernels
 - Lagrangian dual
 - Not as susceptible to noise, especially away from margin

- Neat Biological Inspiration
 - Gradient Descent
 - Local minima
 - Dependent on starting values
 - High Dimensionality requires much more training time
 - Susceptible to noise everywhere
Preliminary Conclusions

• SVM
 – Seems more robust
 – Mathematically appealing

• ANN
 – Much more sensitive