CS570 Introduction to Data Mining

Data Exploration and Data Preprocessing

Li Xiong
Data Exploration and Data Preprocessing

- Data pre-processing
 - Data cleaning
 - Data integration
 - Data transformation

- Data reduction
 - Instance reduction
 - Dimension reduction
 - Feature selection
 - Feature extraction/creation
Feature Extraction

- Create new features (attributes) by combining/mapping existing ones
- Methods
 - Principle Component Analysis
 - Fourier transform
 - Discrete Wavelet Transform
Principal Component Analysis (PCA)

- Principle component analysis: find the dimensions that capture the most variance
 - A linear mapping of the data to a new coordinate system such that the greatest variance lies on the first coordinate (the first principal component), the second greatest variance on the second coordinate, and so on.

- Steps
 - Normalize input data: each attribute falls within the same range
 - Compute k orthonormal (unit) vectors, i.e., principal components - each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing “significance”
 - Weak components can be eliminated, i.e., those with low variance
Dimensionality Reduction: PCA

- **Goal** is to find a projection that captures the largest amount of variation in data.

- **Mathematically**
 - Compute the covariance matrix
 \[\text{Cov}(X, Y) = E[(X - E[X])(Y - E[Y])]. \]
 - Find the eigenvectors of the covariance matrix corresponding to large eigenvalues
 \[Av = \lambda v. \]
Fourier transform

Fourier transform: time-domain to frequency-domain

\[F(\nu) = \int_{-\infty}^{\infty} f(t) \cdot e^{-i2\pi \nu t} \, dt. \]

Two time series

Two time series + Noise

Frequency
Wavelet Transformation

- A common data compression technique (lossy)
- Discrete wavelet transform (DWT): linear signal processing technique divides signal into different frequency components
- Data compression/reduction: store only a small fraction of the strongest of the wavelet coefficients
- Discrete wavelet functions
 - Haar wavelet
 - Daubechies wavelets
DWT Algorithm

- Pyramid algorithm - averaging and differencing method
 - Input data of length L (an integer power of 2)
 - Each transform has 2 functions: smoothing, differencing
 - Applies to pairs of data, resulting in two set of data of length L/2
 - Applies two functions recursively, until reaches the desired length
 - Select coefficients by threshold

- Haar Wavelet Transform
 - Haar matrix (sum and difference) $H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
 - Given 2^n sequence, resulting in $2^n - 1$ differences and one final sum
 - Example: (4,6,10,8,1,9,5,3)

- Filtering of data
 - Low frequency filter (averaging); High frequency filter (differencing)
 - Different features of a signal (background, edges, etc.) correspond to different frequencies

- Advantage over Fourier Transform?
Example of DWT Based Image Compression

DWT compression for test image Lenna (threshold = 1)
Summary

- Data Exploration and Data Preprocessing
 - Data and Attributes
 - Data exploration
 - Descriptive statistics
 - Data visualization
 - Data pre-processing
 - Data cleaning
 - Data integration
 - Data transformation
 - Data reduction