CS570 Introduction to Data Mining

Frequent Pattern Mining and Association Analysis

Li Xiong

Partial slide credits: Jiawei Han and Micheline Kamber
George Kollios
Mining Frequent Patterns, Association and Correlations

- Basic concepts
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
What Is Frequent Pattern Analysis?

- **Frequent pattern**: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
 - Frequent sequential pattern
 - Frequent structured pattern
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.
Frequent Itemset Mining

- Frequent itemset mining: frequent set of items in a transaction data set
- First proposed by Agrawal, Imielinski, and Swami in SIGMOD 1993
 - SIGMOD Test of Time Award 2003
 “This paper started a field of research. In addition to containing an innovative algorithm, its subject matter brought data mining to the attention of the database community ... even led several years ago to an IBM commercial, featuring supermodels, that touted the importance of work such as that contained in this paper.”

Basic Concepts: Frequent Patterns and Association Rules

- Itemset: \(X = \{x_1, \ldots, x_k\} \) (k-itemset)
- Frequent itemset: \(X \) with minimum support count
 - **Support count** (absolute support): count of transactions containing \(X \)
- Association rule: \(A \rightarrow B \) with minimum support and confidence
 - **Support**: probability that a transaction contains \(A \cup B \)
 \[
 s = P(A \cup B)
 \]
 - **Confidence**: conditional probability that a transaction having \(A \) also contains \(B \)
 \[
 c = P(B | A)
 \]
- Association rule mining process
 - Find all frequent patterns (more costly)
 - Generate strong association rules

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, D</td>
</tr>
<tr>
<td>20</td>
<td>A, C, D</td>
</tr>
<tr>
<td>30</td>
<td>A, D, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
<tr>
<td>50</td>
<td>B, C, D, E, F</td>
</tr>
</tbody>
</table>

- Customer buys both
- Customer buys diaper
- Customer buys beer
Illustration of Frequent Itemsets and Association Rules

<table>
<thead>
<tr>
<th>Transaction-id</th>
<th>Items bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, B, D</td>
</tr>
<tr>
<td>20</td>
<td>A, C, D</td>
</tr>
<tr>
<td>30</td>
<td>A, D, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E, F</td>
</tr>
<tr>
<td>50</td>
<td>B, C, D, E, F</td>
</tr>
</tbody>
</table>

- Frequent itemsets (minimum support count = 3) ?
 \{A:3, B:3, D:4, E:3, AD:3\}

- Association rules (minimum support = 50%, minimum confidence = 50%) ?

 A \rightarrow D (60\%, 100\%)
 D \rightarrow A (60\%, 75\%)
Mining Frequent Patterns, Association and Correlations

- Basic concepts
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary
Scalable Methods for Mining Frequent Patterns

- Scalable mining methods for frequent patterns
 - Apriori (Agrawal & Srikant@VLDB’94) and variations
 - Frequent pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)
 - Algorithms using vertical format
- Closed and maximal patterns and their mining methods
- FIMI Workshop and implementation repository
Apriori Property

- The apriori property of frequent patterns
 - Any nonempty subset of a frequent itemset must be frequent
 - If \{beer, diaper, nuts\} is frequent, so is \{beer, diaper\}
- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Bottom up search strategy
Apriori: Level-Wise Search Method

- Level-wise search method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated
The Apriori Algorithm

- **Pseudo-code:**
 \[C_k \text{: Candidate } k\text{-itemset} \]
 \[L_k \text{: frequent } k\text{-itemset} \]

\[L_1 = \text{frequent } 1\text{-itemsets;} \]
\[\text{for } (k = 2; \ L_{k-1} \neq \emptyset; \ k++) \]
 \[C_k = \text{generate candidate set from } L_{k-1}; \]
 \[\text{for each transaction } t \text{ in database} \]
 \[\text{find all candidates in } C_k \text{ that are subset of } t; \]
 \[\text{increment their count;} \]
 \[L_k = \text{candidates in } C_k \text{ with min_support} \]
\[\text{return } \bigcup_k L_k; \]
The Apriori Algorithm—An Example

\[\text{Sup}_{\text{min}} = 2 \]

Transaction DB

<table>
<thead>
<tr>
<th>Tid</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A, C, D</td>
</tr>
<tr>
<td>20</td>
<td>B, C, E</td>
</tr>
<tr>
<td>30</td>
<td>A, B, C, E</td>
</tr>
<tr>
<td>40</td>
<td>B, E</td>
</tr>
</tbody>
</table>

1st scan

\(C_1 \) Itemset

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{D}</td>
<td>1</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

\(L_1 \) Itemset

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
</tr>
</tbody>
</table>

2nd scan

\(C_2 \) Itemset

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>1</td>
</tr>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{A, E}</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

\(L_2 \) Itemset

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A, B}</td>
<td>1</td>
</tr>
<tr>
<td>{A, C}</td>
<td>2</td>
</tr>
<tr>
<td>{A, E}</td>
<td>1</td>
</tr>
<tr>
<td>{B, C}</td>
<td>2</td>
</tr>
<tr>
<td>{B, E}</td>
<td>3</td>
</tr>
<tr>
<td>{C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>

3rd scan

\(C_3 \) Itemset

<table>
<thead>
<tr>
<th>Itemset</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td></td>
</tr>
</tbody>
</table>

\(L_3 \) Itemset

<table>
<thead>
<tr>
<th>Itemset</th>
<th>sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>{B, C, E}</td>
<td>2</td>
</tr>
</tbody>
</table>
Important Details of Apriori

- How to generate candidate sets?
- How to count supports for candidate sets?
Candidate Set Generation

- Step 1: self-joining L_{k-1}: assuming items and itemsets are sorted in order, joinable only if the first k-2 items are in common

  ```sql
  insert into $C_k$
  select $p.item_1$, $p.item_2$, ..., $p.item_{k-1}$, $q.item_{k-1}$
  from $L_{k-1} p$, $L_{k-1} q$
  where $p.item_1 = q.item_1$, ..., $p.item_{k-2} = q.item_{k-2}$, $p.item_{k-1} < q.item_{k-1}$;
  ```

- Step 2: pruning: prune if it has infrequent subset

Example: Generate C_4 from L_3={abc, abd, acd, ace, bcd}

- Step 1: Self-joining: L_3*L_3

 - $abcd$ from abc and abd; $acde$ from acd and ace

- Step 2: Pruning:

 - $acde$ is removed because ade is not in L_3

C_4={$abcd$}
How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates

- Method:
 - Build a hash-tree for candidate itemsets
 - Leaf node contains a list of itemsets
 - Interior node contains a hash function determining which branch to follow
 - Subset function: for each transaction, find all the candidates contained in the transaction using the hash tree
Prefix Tree (Trie)

- Prefix tree
 - Keys are usually strings
 - All descendants of one node have a common prefix
- Advantages
 - Fast looking up
 - Less space with a large number of short strings
 - Help with longest-prefix matching
- Applications
 - Storing dictionary
 - Approximate matching algorithms, including spell checking
Example: Counting Supports of Candidates

hash function

Transaction: 2 3 5 6 7

```
1,4,7  3,6,9
2,5,8
```
Improving Efficiency of Apriori

- Bottlenecks
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates

- Improving Apriori: general ideas
 - Shrink number of candidates
 - Reduce passes of transaction database scans
 - Reduce number of transactions
 - Facilitate support counting of candidates
DHP: Reduce the Number of Candidates

- DHP (Direct hashing and pruning): hash k-itemsets into buckets and a \(k \)-itemset whose bucket count is below the threshold cannot be frequent.
- Especially useful for 2-itemsets:
 - Generate a hash table of 2-itemsets during the scan for 1-itemset.
 - If the count of a bucket is below minimum support count, the itemsets in the bucket should not be included in candidate 2-itemsets.

DHP: Reducing number of candidates

Database D

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>A C D</td>
</tr>
<tr>
<td>200</td>
<td>B C E</td>
</tr>
<tr>
<td>300</td>
<td>A B C E</td>
</tr>
<tr>
<td>400</td>
<td>B E</td>
</tr>
</tbody>
</table>

On the fly

<table>
<thead>
<tr>
<th></th>
<th>C$_1$</th>
<th>count</th>
<th>L$_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>2</td>
<td></td>
<td>{A}</td>
</tr>
<tr>
<td>{B}</td>
<td>3</td>
<td></td>
<td>{B}</td>
</tr>
<tr>
<td>{C}</td>
<td>3</td>
<td></td>
<td>{C}</td>
</tr>
<tr>
<td>{D}</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{E}</td>
<td>3</td>
<td></td>
<td>{E}</td>
</tr>
</tbody>
</table>

Making a hash table

100 {A C}, {A D}, {C D}
200 {B C}, {B E}, {C E}
300 {A B}, {A C}, {A E}, {B C}, {B E}, {C E}
400 {B E}

$\text{h}\{x y\} = ((\text{order of } x) \times 10 + \text{order of } y) \mod 7$;

<table>
<thead>
<tr>
<th></th>
<th>C$_2$</th>
<th># in a bucket with the itemset</th>
<th>C$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A B}</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{A C}</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{A E}</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{B C}</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{B E}</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{C E}</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The number of items hashed to bucket 2

The hash table H_2

Hash address

$| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
 3 | 1 | 2 | 0 | 3 | 1 | 3 |
DHP: Reducing the transactions

- If an item occurs in a frequent \((k+1)\)-itemset, it must occur in at least \(k\) candidate \(k\)-itemset (necessary not sufficient)
- Discard an item if it does not occur in at least \(k\) candidate \(k\)-itemset during support counting

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>({A\ C})</th>
<th>({B\ C})</th>
<th>({B\ E})</th>
<th>({C\ E})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>A C D</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>B C E</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>A B C E</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>B E</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(s = 2\)

\[D_3 = \{<200, B C E>, <300, B C E>\}\]
DIC: Reduce Number of Scans

DIC (Dynamic itemset counting): add new candidate itemsets at partition points
- Once both A and D are determined frequent, the counting of AD begins
- Once all length-2 subsets of BCD are determined frequent, the counting of BCD begins

Partitioning: Reduce Number of Scans

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database in \(n \) partitions and find local frequent patterns (minimum support count?)
 - Scan 2: determine global frequent patterns from the collection of all local frequent patterns

A. Savasere, E. Omiecinski, and S. Navathe. *An efficient algorithm for mining association in large databases*. In *VLDB'95*
Sampling for Frequent Patterns

- Select a sample of original database, mine frequent patterns within samples using Apriori
- Scan database once to verify frequent itemsets found in sample
- Use a lower support threshold than minimum support
- Tradeoff accuracy against efficiency

H. Toivonen. Sampling large databases for association rules. In *VLDB’96*
Assignment 2

- Implementation and evaluation of Apriori
- Performance competition with prizes!
Scalable Methods for Mining Frequent Patterns

- Scalable mining methods for frequent patterns
 - Apriori (Agrawal & Srikant@VLDB’94) and variations
 - Frequent pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD’00)
 - Algorithms using vertical format
- Closed and maximal patterns and their mining methods