Chapter 6. Classification and Prediction

- Overview
- Classification algorithms and methods
 - Decision tree induction
 - Bayesian classification
 - Lazy learning and kNN classification
 - Online learning: Winnow
 - Support Vector Machines (SVM)
- Others
- Ensemble methods
Online learning: Winnow

- PAC learning vs online learning (mistake bound model)

- Winnow: an online learning algorithm for learning linear separator
- Prediction same as perceptron
- Perceptron: additive weight update
- Winnow: multiplicative weight update
Winnow

• Learning disjunction
 – $x_1 \lor x_2 \lor \ldots \lor x_r$ out of n variables
 – Mistake bound $2+3r(\log n)$
 – Most useful when lot of irrelevant variables

• Learning r-of-k threshold functions

• Learning a box

• References:
 – Wolfgang Maass and Manfred K. Warmuth, Efficient Learning with Virtual Threshold Gates
Support Vector Machines: Overview

• A relatively new classification method for both separable and non-separable data

• Features
 – Sound mathematical foundation
 – Training time can be slow but efficient methods are being developed
 – Robust and accurate, less prone to overfitting

• Applications: handwritten digit recognition, speaker identification, ...
Support Vector Machines: History

- Vapnik and colleagues (1992)
 - Groundwork from Vapnik-Chervonenkis theory (1960 – 1990)
- Problems driving the initial development of SVM
 - Bias variance tradeoff, capacity control, overfitting
 - Basic idea: accuracy on the training set vs. capacity

- A Tutorial on Support Vector Machines for Pattern Recognition, Burges, Data Mining and Knowledge Discovery, 1998
Linear Support Vector Machines

- Problem: find a linear hyperplane (decision boundary) that best separate the data
Linear Support Vector Machines

- Which line is better? B1 or B2?
- How do we define better?
Support Vector Machines

- Find hyperplane maximizes the margin
Support Vector Machines Illustration

- A separating hyperplane can be written as
 \[W \bullet X + b = 0 \]
 where \(W = \{w_1, w_2, ..., w_n\} \) is a weight vector and \(b \) a scalar (bias)

- For 2-D it can be written as
 \[w_0 + w_1 x_1 + w_2 x_2 = 0 \]

- The hyperplane defining the sides of the margin:
 \[H_1: w_0 + w_1 x_1 + w_2 x_2 = 1 \]
 \[H_2: w_0 + w_1 x_1 + w_2 x_2 = -1 \]

- Any training tuples that fall on hyperplanes \(H_1 \) or \(H_2 \) (i.e., the sides defining the margin) are \textbf{support vectors}
Support Vector Machines

For all training points:
\[\mathbf{w} \cdot \mathbf{x}_i + b \geq +1 \text{ for } y_i = +1 \]
\[\mathbf{w} \cdot \mathbf{x}_i + b \leq -1 \text{ for } y_i = -1 \]

\[y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \geq 0 \]

Margin = \[\frac{2}{\| \mathbf{w} \|} \]
Support Vector Machines

• We want to maximize:
 \[\text{Margin} = \frac{2}{\| \vec{w} \|} \]

 – Equivalent to minimizing:
 \[\| \vec{w} \|^2 \]

 – But subjected to the constraints:
 \[y_i (\vec{w} \cdot \vec{x}_i + b) - 1 \geq 0 \]

• Constrained optimization problem
 – Lagrange reformulation

\[
L_P \equiv \frac{1}{2} \| w \|^2 - \sum_{i=1}^{l} \alpha_i y_i (x_i \cdot w + b) + \sum_{i=1}^{l} \alpha_i
\]
Support Vector Machines

• What if the problem is not linearly separable?

• Introduce slack variables to the constraints:

\[\vec{w} \cdot \vec{x}_i + b \geq +1 - \xi_i \text{ for } y_i = +1 \]
\[\vec{w} \cdot \vec{x}_i + b \leq -1 + \xi_i \text{ for } y_i = -1 \]

• Upper bound on the training errors:

\[\sum_i \xi_i \]
Nonlinear Support Vector Machines

• What if decision boundary is not linear?
• Transform the data into higher dimensional space and search for a hyperplane in the new space
SVM—Kernel functions

- Instead of computing the dot product on the transformed data tuples, it is mathematically equivalent to instead applying a kernel function $K(X_i, X_j)$ to the original data, i.e., $K(X_i, X_j) = \Phi(X_i) \Phi(X_j)$

- Typical Kernel Functions

 Polynomial kernel of degree h: $K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

 Gaussian radial basis function kernel: $K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

 Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

- SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional user parameters)
Support Vector Machines: Comments and Research Issues

- Robust and accurate with nice generalization properties
- Effective (insensitive) to high dimensions
 - Complexity characterized by # of support vectors rather than dimensionality
- Scalability in training
- Extension to regression analysis
- Extension to multiclass SVM
SVM Related Links

- SVM web sites
 - www.kernel-machines.org
 - www.kernel-methods.net
 - www.support-vector.net
 - www.support-vector-machines.org

- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications
 - SVM-light: simpler but performance is not better than LIBSVM, support only binary classification and only C language
 - SVM-torch: another recent implementation also written in C.
SVM—Introduction Literature

- “Statistical Learning Theory” by Vapnik: extremely hard to understand, containing many errors too

 - Better than the Vapnik’s book, but still written too hard for introduction, and the examples are not-intuitive

- The book “An Introduction to Support Vector Machines” by N. Cristianini and J. Shawe-Taylor
 - Also written hard for introduction, but the explanation about the Mercer’s theorem is better than above literatures

- The neural network book by Haykins
 - Contains one nice chapter of SVM introduction