Data Mining: Concepts and Techniques

— Additional Applications and Emerging Topics —

Li Xiong

Slides credits: Jiawei Han and Micheline Kamber
Chris Clifton
Agrawal and Srikant
Outline

- Biological data mining
- Data mining for intrusion detection
- Privacy-preserving data mining
Biological Data Mining

- High throughput biological data
 - DNA or protein sequence data (nucleotides or amino acids).
 - 3D Protein structure data and protein-protein interaction data
 - Microarray or gene expression data
 - Flow cytometry data

- Mining biological data
 - Alignment and comparative analysis of DNA or protein sequences
 - Discover structural patterns of genetic networks and protein pathways
 - Association analysis and clustering of co-occurring/similar gene sequences
 - Classification based on gene expression patterns
Sequence Alignment

- Goal: given two or more input sequences, identify similar sequences with long conserved subsequences

 HEAGAWGHEE PAWHEAE

- Substitution: probabilities of substitutions, insertions and deletions

- Scoring based on substitution

- Problem: find best alignment with maximal score

 Optimal alignment problem: NP-hard

 Heuristic method to find *good* alignments
Pair-wise Sequence Alignment: Scoring Matrix

HEAGAWGHEE PAWHEAE

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>6</td>
<td>-3</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>H</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>10</td>
<td>-3</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>W</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>15</td>
</tr>
</tbody>
</table>

- **Gap penalty:** -8
- **Gap extension:** -8

HEAGAWGHE--E

P-A--W-HEAE

\[(-8) + (-8) + (-1) + (-8) + 5 + 15 + (-8) + 10 + 6 + (-8) + 6 = 1 \]

HEAGAWGHE--E

P-A--W-HEAE
Heuristic Alignment Algorithms

- Motivation: Complexity of alignment algorithms: $O(nm)$
 - Current protein DB: 100 million base pairs
 - Matching each sequence with a 1,000 base pair query takes about 3 hours!
- Heuristic algorithms aim at speeding up at the price of possibly missing the best scoring alignment
- Two well known programs
 - BLAST: Basic Local Alignment Search Tool
 - FASTA: Fast Alignment Tool
 - Basic idea: first locate high-scoring short stretches and then extend them
BLAST (Basic Local Alignment Search Tool)

- Approach (BLAST) (Altschul et al. 1990, developed by NCBI)
 - View sequences as sequences of short words (k-tuple)
 - DNA: 11 bases, protein: 3 amino acids
 - Create hash table of neighborhood (closely-matching) words
 - Use statistics to set threshold for “closeness”
 - Start from exact matches to neighborhood words

- Motivation
 - Good alignments should contain many close matches
 - Statistics can determine which matches are significant
 - Much more sensitive than % identity
 - Hashing can find matches in O(n) time
 - Extending matches in both directions finds alignment
 - Yields high-scoring/maximum segment pairs (HSP/MSP)
BLAST (Basic Local Alignment Search Tool)

1) Convert 1st sequence into words (using all frames for given word size)

2) Calculate for each word list of “neighborhood” words (scoring threshold T) and enter in dictionary

3) Scan 2nd sequence, find matching words in dictionary, store locations

4) For each match, extend alignment in both directions while score above threshold S, merge segments

5) Align best segments using dynamic programming, report statistically significant matches
Microarray Experiments

- Microarray chip with DNA sequences attaches in fixed grids.
- cDNA is produced from mRNA samples and labeled using either fluorescent dyes or radioactive isotopes.
- Hybridize cDNA over the microarray.
- Scan the microarray to read the signal intensity that reveals the expression level of transcribed genes.

www.affymetrix.com
Microarray Data

- Microarray data are usually transformed into an intensity matrix.
- The intensity matrix allows biologists to make correlations between different genes (even if they are dissimilar) and to understand how genes functions might be related.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Time X</th>
<th>Time Y</th>
<th>Time Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 1</td>
<td>10</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Gene 2</td>
<td>10</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Gene 3</td>
<td>4</td>
<td>8.6</td>
<td>3</td>
</tr>
<tr>
<td>Gene 4</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Gene 5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Intensity (expression level) of gene at measured time
Microarray Data

- Track the sample over a period of time
- Track two different samples under the same conditions

Each box represents one gene’s expression over time
Microarray Data Analysis

- Clustering
 - Gene-based clustering: cluster genes based on their expression patterns
 - Sample-based clustering: cluster samples
 - Subspace clustering: capture clusters formed by a subset of genes across a subset of samples

- Classification
 - According to clinical syndromes or cancer types

- Association analysis

- Issues
 - Large number of genes
 - Limited number of samples
Outline

- Biological data mining
- Data mining for intrusion detection
- Privacy-preserving data mining
Intrusion Detection

- **Intrusions**: Any set of actions that threaten the integrity, availability, or confidentiality of a system or network resource

- **Intrusion detection**: The process of monitoring and analyzing the events occurring in a computer and/or network system in order to detect signs of security problems
IDS Architecture
Traditional Approaches

- **Misuse detection**: use patterns of well-known attacks to identify intrusions
- **Anomaly detection**: use deviation from normal usage patterns to identify intrusions
Problems of Traditional Approaches

- Main problems: manual and ad-hoc

- Misuse detection:
 - Known intrusion patterns have to be hand-coded
 - Unable to detect any new intrusions (that have no matched patterns recorded in the system)

- Anomaly detection:
 - Selecting the right set of system features to be measured is ad hoc and based on experience
 - Unable to capture sequential interrelation between events
 - High false positive rate
Data Mining Can Help

- Frequent pattern and association rules mining
 - Correlated features for attacks
 \{\text{Src IP}=206.163.27.95, \text{Dest Port}=139, \text{Bytes} \in [150, 200)\} \rightarrow \text{attack}
 \{\text{num_failed_login_attempts} = 6, \text{service} = \text{FTP}\} \rightarrow \text{attack}
 - Correlated alerts for high-level attacks (Ning et al. CCS’02)

- Frequent sequential patterns
 - Capture the signatures for attacks in a series of events

- Classification
 - Classify a pattern -- decision tree, neural network, SVM, etc

- Clustering
 - Build clusters of normal activities and intrusions -> signatures

- Data stream mining
Case Study: Building Classifiers for Anomaly Detection (J. Stolfo et al.)

- **Network tcpdump data**
 - Packets of incoming, out-going, and internal broadcast traffic
 - One trace of normal network traffic and three traces of network intrusions

- **Extract the “connection” level features:**
 - start time and duration
 - participating hosts and ports (applications)
 - statistics (e.g., # of bytes)
 - flag: normal or a connection/termination error
 - protocol: TCP or UDP

- **Lessons learned**
 - Data preprocessing requires extensive domain knowledge
 - Adding temporal features improves classification accuracy
References

- C. Kruegel and G. Vigna. Anomaly detection of web-based attacks, in ACM CCS’03
- S. Mukkamala et al., Intrusion detection using neural networks and support vector machines, in IEEE IJCNN (May 2002).
- Bertrand Portier, Data Mining Techniques for Intrusion Detection
- S. Axelsson, Intrusion Detection Systems: A Survey and Taxonomy
- J. Allen et al., State of the Practice of Intrusion Detection Technologies
- Susan M. Bridges et al. DATA MINING AND GENETIC ALGORITHMS APPLIED TO INTRUSION DETECTION
Outline

- Biological data mining
- Data mining for intrusion detection
- Privacy-preserving data mining
Privacy Preserving Data Mining

- Constraints
 - Individual privacy
 - Organizational data confidentiality

- Goal of data mining is summary results
 - Association rules
 - Classifiers
 - Clusters

- The results alone need not violate privacy
 - Contain no individually identifiable values
 - Reflect overall results, not individual organizations

The problem is computing the results without access to the data!
Classes of Solutions

- Data Obfuscation
 - Nobody sees the *real* data

- Summarization
 - Only the needed facts are exposed

- Data Separation
 - Data remains with trusted parties
Data Obfuscation

- **Goal:** Hide the protected information

- **Approaches**
 - Randomly modify data
 - Swap values between records
 - Controlled modification of data to hide secrets

- **Problems**
 - Does it really protect the data?
 - Can we learn from the results?

- Randomization-based decision tree learning
 * (Agrawal & Srikant ’00)
Randomization Based Decision Tree Learning (Agrawal and Srikant ’00)

- **Basic idea:** Perturb Data with Value Distortion
 - User provides $x_i + r$ instead of x_i
 - r is a random value
 - Uniform, uniform distribution between $[-\alpha, \alpha]$
 - Gaussian, normal distribution with $\mu = 0, \sigma$

- **Hypothesis**
 - Miner doesn’t see the real data or can’t reconstruct real values
 - Miner can reconstruct enough information to identify patterns
Randomization Approach Overview

Alice's age

Add random number to Age

30 becomes 65 (30+35)

Randomizer

Reconstruct Distribution of Age

Reconstruct Distribution of Salary

Classification Algorithm

Model
Output: A Decision Tree for “buys_computer”

- age?
 - <=30
 - student?
 - no
 - yes
 - yes
 - 31..40
 - >40
 - credit rating?
 - excellent
 - fair
 - yes
 - no
Attribute Selection Measure: Gini index (CART)

- If a data set D contains examples from n classes, gini index, $gini(D)$ is defined as

$$gini(D) = 1 - \sum_{j=1}^{n} p_j^2$$

where p_j is the relative frequency of class j in D

- If a data set D is split on A into two subsets D_1 and D_2, the gini index $gini(D)$ is defined as

$$gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

- Reduction in Impurity:

$$\Delta gini(A) = gini(D) - gini_A(D)$$

- The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node
Original Distribution Reconstruction

- x_1, x_2, \ldots, x_n are the n original data values
 - Drawn from n iid random variables X_1, X_2, \ldots, X_n similar to X

- Using value distortion,
 - The given values are $w_1 = x_1 + y_1$, $w_2 = x_2 + y_2$, \ldots, $w_n = x_n + y_n$
 - y_i’s are from n iid random variables Y_1, Y_2, \ldots, Y_n similar to Y

- Reconstruction Problem:
 - Given F_Y and w_i’s, estimate F_X
Original Distribution Reconstruction: Method

- Bayes’ theorem for continuous distribution

\[
f(x|y) = \frac{f(x, y)}{f(y)} = \frac{f(y|x) f(x)}{f(y)} = \frac{f(y|x) f(x)}{\int_{-\infty}^{\infty} f(y|x) f(x) \, dx}.
\]

- The estimated density function:

\[
f'_X(a) = \frac{1}{n} \sum_{i=1}^{n} \frac{f_Y(w_i - a)f_X(a)}{\int_{-\infty}^{\infty} f_Y(w_i - z)f_X(z) \, dz}
\]

- Iterative estimation
 - The initial estimate for \(f_X\) at \(j=0\): uniform distribution
 - Iterative estimation

\[
f_{X}^{j+1}(a) = \frac{1}{n} \sum_{i=1}^{n} \frac{f_Y(w_i - a)f_{X}^{j}(a)}{\int_{-\infty}^{\infty} f_Y(w_i - z)f_{X}^{j}(z) \, dz}
\]

- Stopping Criterion: \(\chi^2\) test between successive iterations
Reconstruction of Distribution
Original Distribution Reconstruction
Original Distribution Construction for Decision Tree

- When are the distributions reconstructed?
 - Global
 - Reconstruct for each attribute once at the beginning
 - Build the decision tree using the reconstructed data
 - ByClass
 - First split the training data
 - Reconstruct for each class separately
 - Build the decision tree using the reconstructed data
 - Local
 - First split the training data
 - Reconstruct for each class separately
 - Reconstruct at each node while building the tree
Accuracy vs. Randomization Level

Fn 3
More Results

- Global performs worse than ByClass and Local
- ByClass and Local have accuracy within 5% to 15% (absolute error) of the Original accuracy
- Overall, all are much better than the Randomized accuracy
Follow-up Work

- Simple additive randomization
- Multiplicative randomization
- Geometric randomization
Summarization

- **Goal:** Make only innocuous summaries of data available

- **Approaches:**
 - Overall collection statistics
 - Limited query functionality

- **Problems:**
 - Can we deduce data from statistics?
 - Is the information sufficient?
Data Separation

- **Goal:** Only trusted parties see the data
- **Approaches:**
 - Data split among trusted parties and each agrees not to release or share the data
- **Problems:**
 - Can we learn global models without sharing the data?
 - Do the analysis results disclose private information?
Secure Multiparty Computation

- **Goal:** Compute function when each party has some of the inputs

- **Yao’s Millionaire’s problem** *(Yao ’86)*
 - Secure computation possible if function can be represented as a circuit of gates
 - Idea: Securely compute gate

- **Secure multi-party computation** *(Goldreich, Micali, and Wigderson ’87)*
 - Given a function f and n inputs distributed at n sites, compute the result without revealing to any site anything except its own input(s) and the result.
 \[y = f(x_1, x_2, \ldots, x_n) \]
Decision Tree Construction \textit{(Lindell \& Pinkas ‘00)}

- Scenario: two-party horizontal partitioning
 - Each site has same schema
 - Attribute set known
 - Individual entities private
- Problem: Learn a decision tree classifier ID3 while meeting Secure Multiparty Computation Definitions
- Key assumptions
 - Semi-honest model
 - Only Two-party case considered
 - Extension to multiple parties is not trivial
 - Deals only with categorical attributes
ID3

- R - the set of attributes
- C - the class attribute
- T - the set of transactions

ID3(R, C, T)

1. If R is empty, return a leaf-node with the class value assigned to the most transactions in T.

2. If T consists of transactions which all have the same value c for the class attribute, return a leaf-node with the value c (finished classification path).

3. Otherwise,

 (a) Determine the attribute that best classifies the transactions in T, let it be A.

 (b) Let a₁, ..., aₘ be the values of attribute A and let T(a₁), ..., T(aₘ) be a partition of T such that every transaction in T(aᵢ) has the attribute value aᵢ.

 (c) Return a tree whose root is labeled A (this is the test attribute) and has edges labeled a₁, ..., aₘ such that for every i, the edge aᵢ goes to the tree ID3(R − {A}, C, T(aᵢ)).
Privacy Preserving ID3

Step 1: If R is empty, return a leaf-node with the class value assigned to the most transactions in T

- Inputs: $(|T_1(c_1)|, \ldots, |T_1(c_L)|), (|T_2(c_1)|, \ldots, |T_2(c_L)|)$
- Output: i where $|T_1(c_i)| + |T_2(c_i)|$ is largest
- Yao’s protocol
Privacy Preserving ID3

Step 2: If T consists of transactions which have all the same value c for the class attribute, return a leaf node with the value c

- Input: Either a symbol representing having more than one class or c_i
- Output: whether they have the same class attribute
- Equality checking protocols
 - Yao’86
 - Fagin, Naor ’96
 - Naor, Pinkas ‘01
Privacy Preserving ID3

- Step 3(a): *Determine the attribute that best classifies the transactions in T, let it be A*
 - Essentially done by securely computing $x^*(\ln x)$

- Step 3(b,c): *Recursively call $ID3_\delta$ for the remaining attributes on the transaction sets $T(a_1), \ldots, T(a_m)$ where a_1, \ldots, a_m are the values of the attribute A*
 - Since the results of 3(a) and the attribute values are public, both parties can individually partition the database and prepare their inputs for the recursive calls
Summary

- Privacy and Security Constraints can be impediments to data mining
 - Problems with access to data
 - Restrictions on sharing
 - Limitations on use of results

- Technical solutions possible
 - Randomizing / swapping data doesn’t prevent learning good models
 - We don’t need to share data to learn global results

- Still lots of work to do!