CS573 Data Privacy and Security

Location Privacy

Yonghui (Yohu) Xiao
http://yxiao.info
Outline

• What is Location Privacy

• Basic Techniques
 – Private Information Retrieval
 – Probabilistic Approach
 • Stationary
 • Temporal
What is Location Privacy

• Location Based Services (LBS)
 – Yelp, Google+, facebook, Instagram, Twitter...
 – Restaurant check-in, finding the nearest gas station, navigation, tourist city guide, ...

• Location Sharing
 – Find Friends, Find my iphone, ...

• Location Based Social Networks
 – Foursquare, Swarm

• Risks?
 – Give your location data for the service
Location Privacy

• Risks
 – Give your location traces to Google, Apple or other service providers
 – Enable malicious apps to know your locations
 – Sharing in Facebook, but available throughout internet
 – Locations may be leaked to other attackers through network
 – Physical danger, e.g. http://pleaserobme.com/

• User’s choices
 – Use LBS, give up privacy
 – Or preserve privacy, give up the LBS
 – Can we achieve the two goals: utility and privacy?
Features of Location Privacy

• Vs. Standard Differential Privacy
 – Differential Privacy: the outputs are similar whether a user opts in or out
 – For LBS, only one user

• Data Type
 – Standard Differential Privacy: tuples in Database
 – Location Privacy: where a user is

• Location data is only two-dimensional
 – Or at most three-dimensional
Techniques

• Encryption-based Techniques
 – Private Information Retrieval

• Probabilistic Techniques
 – Location obfuscation, location cloaking
 – Location generalization

• Continuous Protection
 – Temporal correlations
Private Information Retrieval (PIR)

• Allow user to query database while hiding the identity of the data-items she is querying.
 – What is the nearest restaurant to me?
 – Send a query to the server
 – Get a restaurant from the server

• Computational PIR
 – Homomorphic encryption

• Intensive Computational Cost
Probabilistic Techniques

• Spatial Cloaking/Location Generalization
 – Instead of sending the exact location to the service providers, a user can send a “general area”.

![Map of Paris with generalized locations](image)
Location Obfuscation

• Location Obfuscation
 – Instead of sending the exact location to the service providers, a user can send a “noisy” location.
 – Essentially, similar to spatial cloaking.
 • With the “general area”, a point can be randomly chosen to represent the “noisy” location.
 • The posterior probability of the “noisy” location will be the same as the “general area”. Can you prove it?
Probabilistic Techniques

• Privacy Guarantee
 – Uniform distribution in a circle
 – Uniform distribution in a polygon
 – Laplace distribution
 – Other distributions: 2D Gaussian distribution

• The trade-off between utility and privacy
 – What is the expected distance between the noisy location and the real location?
 – How much extra information does the noisy location give to attackers?
 – Can you derive the above distance function and the privacy function?
Geo-indistinguishability

• Geo-indistinguishability
 – A “differentially private” cloaking method
 – Based on the 2D Laplace distribution
 – Randomly draw a point from the distribution
Geo-indistinguishability

• Definition
 – Pr(z|x)≤e^{\epsilon}\cdot Pr(z|x')
 – Where x and x' are any two locations in a circle with a radius r, z is the noisy location

• Features
 – Location data: x and x’ are two points on a map
 – Neighboring databases: any points in the circle
 – Protection: indistinguishability in the circle
Geo-indistinguishability

• Geo-indistinguishability
 – How to prove the privacy?

\[
\begin{align*}
D_{\epsilon}(x_0)(x) &= \frac{\epsilon^2}{2\pi} e^{-\epsilon d(x_0, x)} \\
\end{align*}
\]

 – How much differential privacy can it provide?

• Open question:
 – Can you come up with a better sampling algorithm than the paper (Geo-indistinguishability, CCS13)
Continuous Approach

• Potential problems of the cloaking algorithms at stationary timestamps.
 – Not private in a period of time.
 – Examples:
Continuous Approach

- Location Release over time
Continuous Approach

• Temporal Correlations
 – Road network
 – Moving patterns of a user
 – Example:
 • Given that Alice is at MSC building now, she may go to Starbucks with probability 0.3, DUC with probability 0.3, and library with probability 0.4.

• How to describe such correlations?
 – A common method is to use Markov model
Markov Model

- Markov Model
 - Coordinate System
Markov Model

- Markov Model
 - Transition Matrix
 - A matrix M denotes the probabilities that a user moves from one location to another
 - $M_{i,j}$ is the probability of moving from location i to location j.
 - $M_{i,j}$ is the element of ith row and jth column.
Markov Model

- Markov Model
 - Emission Probability
 - Given the real location i, what is the probability distribution of the noisy locations?
 \[
 Pr(z_t | u^*_t = s_i)
 \]
 - Inference and Evolution
 \[
 p^+_t[i] = Pr(x_t = s_i | z_t) = \frac{Pr(z_t | x_t = s_i)p^+_t[i]}{\sum_j Pr(z_t | x_t = s_j)p^+_t[j]}
 \]
Markov Model

• Derive the possible locations at current timestamp
 – Bayesian inference using the previously released locations.
 – A set of possible locations can be generated.

• Only protect the true location within this set of possible locations.
 – Recall the definition of “neighboring databases”
 – What is the new neighboring databases here?
Extended Differential Privacy

Definition (Differential Privacy)
At any timestamp t, a randomized mechanism A satisfies ϵ-differential privacy on δ-location set if, for any output z_t and any two locations x_1 and x_2 in δ-location set, the following holds:

$$
\frac{Pr(A(x_1) = z_t)}{Pr(A(x_2) = z_t)} \leq e^\epsilon
$$

Intuition
the released location z_t (observed by the adversary) will not help an adversary to differentiate any instances in δ-location set.
Probability Design

• Design a distribution on the set of possible locations.
Continuous Released Locations

- Example: Released “Noisy” Locations
References

• Geo-indistinguishability: differential privacy for location-based systems, CCS, 2013
• Protecting Locations with Differential Privacy under Temporal Correlations, CCS, 2015
• Quantifying Location Privacy, IEEE SP 2011
• In-Network Trajectory Privacy Preservation, ACM Computing Surveys (CSUR) 2015