Data Anonymization -
Generalization Algorithms

Li Xiong

CS573 Data Privacy and Anonymity
Generalization and Suppression

- **Generalization**
 - Replace the value with a less specific but semantically consistent value

- **Suppression**
 - Do not release a value at all

Z0 = {41075, 41076, 41095, 41099}

Z1 = {4107*, 4109*}

Z2 = {410**}

S0 = {Male, Female}

S1 = {Person}

<table>
<thead>
<tr>
<th>#</th>
<th>Zip</th>
<th>Age</th>
<th>Nationality</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41076</td>
<td>< 40</td>
<td>*</td>
<td>Heart Disease</td>
</tr>
<tr>
<td>2</td>
<td>48202</td>
<td>< 40</td>
<td>*</td>
<td>Heart Disease</td>
</tr>
<tr>
<td>3</td>
<td>41076</td>
<td>< 40</td>
<td>*</td>
<td>Cancer</td>
</tr>
<tr>
<td>4</td>
<td>48202</td>
<td>< 40</td>
<td>*</td>
<td>Cancer</td>
</tr>
</tbody>
</table>
Complexity

Search Space:

• Number of generalizations = \(\prod_{\text{attrib } i} (\text{Max level of generalization for attribute } i + 1) \)

If we allow generalization to a different level for each value of an attribute:

• Number of generalizations = \(\prod_{\text{attrib } i} (\text{Max level of generalization for attribute } i + 1) \)
Hardness result

- Given some data set R and a QI Q, does R satisfy k-anonymity over Q?
 - Easy to tell in polynomial time, NP!

- Finding an *optimal* anonymization is not easy
 - NP-hard: reduction from k-dimensional perfect matching
 - A polynomial solution implies $P = NP$

Taxonomy of Generalization Algorithms

- Top-down specialization vs. bottom-up generalization
- Global (single dimensional) vs. local (multi-dimensional)
- Complete (optimal) vs. greedy (approximate)
- Hierarchy-based (user defined) vs. partition-based (automatic)

Generalization algorithms

- Early systems
 - μ-Argus, Hundpool, 1996 - Global, bottom-up, greedy
 - Datafly, Sweeney, 1997 - Global, bottom-up, greedy

- k-anonymity algorithms
 - AllMin, Samarati, 2001 - Global, bottom-up, complete, impractical
 - MinGen, Sweeney, 2002 - Global, bottom-up, complete, impractical
 - Bottom-up generalization, Wang, 2004 – Global, bottom-up, greedy
 - TDS (Top-Down Specialization), Fung, 2005 - Global, top-down, greedy
 - K-OPTIMIZE, Bayardo, 2005 – Global, top-down, partition-based, complete
 - Incognito, LeFevre, 2005 – Global, bottom-up, hierarchy-based, complete
 - Mondrian, LeFevre, 2006 – Local, top-down, partition-based, greedy
μ-Argus

- Hundpool and Willenborg, 1996
- Greedy approach
- Global generalization with tuple suppression
- Not guaranteeing k-anonymity
μ-Argus

Input: Private Table PT; quasi-identifier $QI = (A_1, \ldots, A_n)$, disjoint subsets of QI known as $Identifying$, $More$, and $Most$ where $QI = Identifying \cup More \cup Most$, k constraint; domain generalization hierarchies DGH_{Ai}, where $i=1,\ldots,n$.

Output: MT containing a generalization of $PT[QI]$

Assumes: $|PT| \geq k$

Method:
1. $freq \leftarrow$ a frequency list containing distinct sequences of values of $PT[QI]$, along with the number of occurrences of each sequence.
2. Generalize each $A_i \in QI$ in $freq$ until its assigned values satisfy k.
3. Test 2- and 3- combinations of $Identifying$, $More$ and $Most$ and let outliers store those cell combinations not having k occurrences.
4. Data holder decides whether to generalize an $A_i \in QI$ based on outliers and if so, identifies the A_i to generalize. $freq$ contains the generalized result.
5. Repeat steps 3 and 4 until the data holder no longer elects to generalize.
6. Automatically suppress a value having a combination in outliers, where precedence is given to the value occurring in the most number of combinations of outliers.

μ-Argus algorithm
Figure 13 Most x More combination test and resulting freq

Figure 14 freq before suppression

Figure 15 Results from the μ-Argus algorithm and from the program
Problems With μ-Argus

1. Only 2- and 3- combinations are examined, there may exist 4 combinations that are unique – may not always satisfy k-anonymity

2. Enforce generalization at the attribute level (global) – may over generalize
The Datafly System

- Sweeney, 1997
- Greedy approach
- Global generalization with tuple suppression
Datafly Algorithm

Input: Private Table PT; quasi-identifier $Ql = (A_1, \ldots, A_n)$, k constraint; hierarchies DGH_{Ai}, where $i=1,\ldots,n$.
Output: MGT, a generalization of $PT[Ql]$ with respect to k
Assumes: $|PT| \geq k$
Method:
1. $freq \leftarrow$ a frequency list contains distinct sequences of values of $PT[Ql]$, along with the number of occurrences of each sequence.
2. while there exists sequences in $freq$ occurring less than k times that account for more than k tuples do
 2.1. let A_j be attribute in $freq$ having the most number of distinct values
 2.2. $freq \leftarrow$ generalize the values of A_j in $freq$
3. $freq \leftarrow$ suppress sequences in $freq$ occurring less than k times.
4. $freq \leftarrow$ enforce k requirement on suppressed tuples in $freq$.
5. Return $MGT \leftarrow$ construct table from $freq$
Datafly

Figure 9 Intermediate stages of the core Datafly algorithm

MGT resulting from Datafly, $k=2$, $QI=\{\text{Race, Birthdate, Gender, ZIP}\}$
Problems With Datafly

1. Generalizing all values associated with an attribute (global)
2. Suppressing all values within a tuple (global)
3. Selecting the attribute with the greatest number of distinct values as the one to generalize first – computationally efficient but may over generalize
Generalization algorithms

- Early systems
 - µ-Argus, Hundpool, 1996 - Global, bottom-up, greedy
 - Datafly, Sweeney, 1997 - Global, bottom-up, greedy

- k-anonymity algorithms
 - AllMin, Samarati, 2001 - Global, bottom-up, complete, impractical
 - MinGen, Sweeney, 2002 - Global, bottom-up, complete, impractical
 - Bottom-up generalization, Wang, 2004 – Global, bottom-up, greedy
 - TDS (Top-Down Specialization), Fung, 2005 - Global, top-down, greedy
 - K-OPTIMIZE, Bayardo, 2005 – Global, top-down, partition-based, complete
 - Incognito, LeFevre, 2005 – Global, bottom-up, hierarchy-based, complete
 - Mondrian, LeFevre, 2006 – Local, top-down, partition-based, greedy
K-OPTIMIZE

- Practical solution to guarantee optimality
- Main techniques
 - Framing the problem into a set-enumeration search problem
 - Tree-search strategy with cost-based pruning and dynamic search rearrangement
 - Data management strategies
Anonymization Strategies

- **Local suppression**
 - Delete individual attribute values
 - E.g. <Age=50, Gender=M, State=CA>

- **Global attribute generalization**
 - Replace specific values with more general ones for an attribute
 - Numeric data: partitioning of the attribute domain into intervals. E.g. Age={[1-10],...,[91-100]}
 - Categorical data: generalization hierarchy supplied by users. E.g. Gender = [M or F]
K-Anonymization with Suppression

- K-anonymization with suppression
 - Global attribute generalization with local suppression of outlier tuples.

- Terminologies
 - Dataset: D
 - Anonymization: \{a_1, \ldots, a_m\}

Equivalent classes: \(E \{ v_{1,1}, \ldots, v_{1,m}, \ldots, v_{1,n}, \ldots, v_{n,m} \} \)
Finding Optimal Anonymization

- Optimal anonymization determined by a cost metric
- Cost metrics
 - Discernibility metric: penalty for non-suppressed tuples and suppressed tuples
 \[C_{DM}(g, k) = \sum_{E \text{ s.t. } |E| \geq k} |E|^2 + \sum_{E \text{ s.t. } |E| < k} |D||E| \]
 - Classification metric
Modeling Anonymizations

- Assume a total order over the set of all attribute domain

- Set representation for anonymization
 - E.g. Age: \([10-29],[30-49]\), Gender: \([M\text{ or } F]\), Marital Status: \([\text{Married}],[\text{Widowed or Divorced}],[\text{Never Married}]\)
 - \([1,2,4,6,7,9] \rightarrow [2,7,9]\)

- Power set representation for entire anonymization space
 - Power set of \([2,3,5,7,8,9]\) - order of \(2^n!\)
 - \(\{\}\) – most general anonymization
 - \([2,3,5,7,8,9]\) – most specific anonymization
Optimal Anonymization Problem

Goal
- Find the best anonymization in the powerset with lowest cost

Algorithm
- set enumeration search through tree expansion - size 2^n
- Top-down depth first search

Heuristics
- Cost-based pruning
- Dynamic tree rearrangement

Set enumeration tree over powerset of \{1,2,3,4\}
Node Pruning through Cost Bounding

- **Intuitive idea**
 - prune a node H if none of its descendents can be optimal

- **Cost lower-bound of subtree of H**
 - Cost of suppressed tuples bounded by H
 - Cost of non-suppressed tuples bounded by A

$$L_{BM}(H, A) = \sum_{t \in D} \begin{cases} |D| & \text{when } t \text{ is suppressed by } H, \\ \max(|A_t|, k) & \text{otherwise.} \end{cases}$$
Useless Value Pruning

- Intuitive idea
 - Prune useless values that have no hope of improving cost

- Useless values
 - Only split equivalence classes into suppressed equivalence classes (size < k)
Tree Rearrangement

- Intuitive idea
 - Dynamically reorder tree to increase pruning opportunities

- Heuristics
 - sort the values based on the number of equivalence classes induced
Experiments

- Adult census dataset
 - 30k records and 9 attributes
 - Fine: powerset of size 2^{160}
- Evaluations of performance and optimal cost
- Comparison with greedy/stochastic method
 - 2-phase greedy generalization/specialization
 - Repeated process
Results – Comparison

- None of the other optimal algorithms can handle the census data
- Greedy approaches, while executing quickly, produce highly sub-optimal anonymizations
- Comparison with 2-phase method (greedy + stochastic)
Comments

- Interesting things to think about
 - Domains without hierarchy or total order restrictions
 - Other cost metrics
 - Global generalization vs. local generalization
Generalization algorithms

- Early systems
 - μ-Argus, Hundpool, 1996 - Global, bottom-up, greedy
 - Datafly, Sweeney, 1997 - Global, bottom-up, greedy

- k-anonymity algorithms
 - AllMin, Samarati, 2001 - Global, bottom-up, complete, impractical
 - MinGen, Sweeney, 2002 - Global, bottom-up, complete, impractical
 - Bottom-up generalization, Wang, 2004 – Global, bottom-up, greedy
 - TDS (Top-Down Specialization), Fung, 2005 - Global, top-down, greedy
 - K-OPTIMIZE, Bayardo, 2005 – Global, top-down, partition-based, complete
 - Incognito, LeFevre, 2005 – Global, bottom-up, hierarchy-based, complete
 - Mondrian, LeFevre, 2006 – Local, top-down, partition-based, greedy
Mondrian

- Top-down partitioning
- Greedy
- Local (multidimensional) – tuple/cell level
Global Recoding

- Mapping domains of quasi-identifiers to generalized or altered values using a *single* function

Notation
- D_x is the domain of attribute X_i in table T

Single Dimensional
- $\phi_i : D_{x_i} \rightarrow D'$ for each attribute X_i of the quasi-identifier
- ϕ_i applied to values of X_i in tuple of T
Local Recoding

- Multi-Dimensional
 - Recode domain of value vectors from a set of quasi-identifier attributes
 - \(\varphi : D_{x_1} \times \ldots \times D_{x_n} \rightarrow D' \)
 - \(\varphi \) applied to vector of quasi-identifier attributes in each tuple in \(T \)
Partitioning

- Single Dimensional
 - For each X_i, define non-overlapping single dimensional intervals that covers D_{x_i}
 - Use ϕ_i to map $x \in D_x$ to a summary stat

- Strict Multi-Dimensional
 - Define non-overlapping multi-dimensional intervals that covers $D_{x_1} \ldots D_{x_d}$
 - Use ϕ to map $(x_{x_1} \ldots x_{x_d}) \in D_{x_1} \ldots D_{x_d}$ to a summary stat for its region
Global Recoding Example

k = 2

Quasi Identifiers

- Age, Sex, Zipcode

Patient Data

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Zipcode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>25</td>
<td>Female</td>
<td>53712</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>26</td>
<td>Male</td>
<td>53711</td>
<td>Bronchitis</td>
</tr>
<tr>
<td>27</td>
<td>Male</td>
<td>53710</td>
<td>Broken Arm</td>
</tr>
<tr>
<td>27</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
<tr>
<td>28</td>
<td>Male</td>
<td>53711</td>
<td>Hang Nail</td>
</tr>
</tbody>
</table>

Single Dimensional

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Zipcode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>[25-28]</td>
<td>Female</td>
<td>53712</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>[25-28]</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
</tbody>
</table>

Multi-Dimensional

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Zipcode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>[25-26]</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>[25-27]</td>
<td>Female</td>
<td>53712</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>[25-26]</td>
<td>Male</td>
<td>53711</td>
<td>Bronchitis</td>
</tr>
<tr>
<td>[25-27]</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
</tbody>
</table>
Global Recoding Example 2

$k = 2$
Quasi Identifiers
Age, Zipcode

Patient Data Single Dimensional Multi-Dimensional
Greedy Partitioning Algorithm

Problem
- Need an algorithm to find multi-dimensional partitions
- Optimal k-anonymous strict multi-dimensional partitioning is NP-hard

Solution
- Use a greedy algorithm
- Based on k-d trees
- Complexity $O(n \log n)$
Greedy Partitioning Algorithm

Anonymize(partition)
 if (no allowable multidimensional cut for partition)
 return \(\phi : \text{partition} \rightarrow \text{summary} \)
 else
 \(dim \leftarrow \text{choose dimension}() \)
 \(fs \leftarrow \text{frequency set}(\text{partition}, dim) \)
 \(\text{splitVal} \leftarrow \text{find median}(fs) \)
 \(\text{lhs} \leftarrow \{ t \in \text{partition} : t.\text{dim} \leq \text{splitVal} \} \)
 \(\text{rhs} \leftarrow \{ t \in \text{partition} : t.\text{dim} > \text{splitVal} \} \)
 return Anonymize(rhs) \cup \text{Anonymize(lhs)} \)
Algorithm Example

- $k = 2$
- Dimension determined heuristically
- Quasi-identifiers
 - Zipcode
 - Age

Patient Data

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Zipcode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>25</td>
<td>Female</td>
<td>53712</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>26</td>
<td>Male</td>
<td>53711</td>
<td>Brochitis</td>
</tr>
<tr>
<td>27</td>
<td>Male</td>
<td>53710</td>
<td>Broken Arm</td>
</tr>
<tr>
<td>27</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
<tr>
<td>28</td>
<td>Male</td>
<td>53711</td>
<td>Hang Nail</td>
</tr>
</tbody>
</table>

Anonymized Data

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Zipcode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>[25-26]</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>[25-26]</td>
<td>Male</td>
<td>53711</td>
<td>Brochitis</td>
</tr>
<tr>
<td>[25-27]</td>
<td>Female</td>
<td>53712</td>
<td>Broken Arm</td>
</tr>
<tr>
<td>[25-27]</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
</tbody>
</table>
Algorithm Example

Iteration # 1 (full table)

partition

LHS

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>25</td>
<td>Female</td>
<td>53712</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>26</td>
<td>Male</td>
<td>53711</td>
<td>Bronchitus</td>
</tr>
<tr>
<td>27</td>
<td>Male</td>
<td>53710</td>
<td>Broken Arm</td>
</tr>
<tr>
<td>27</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
<tr>
<td>28</td>
<td>Male</td>
<td>53711</td>
<td>Hang Nail</td>
</tr>
</tbody>
</table>

RHS

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Female</td>
<td>53712</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>27</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
</tbody>
</table>

dim = Zipcode

fs

splitVal = 53711
Algorithm Example continued

Iteration # 2 (LHS from iteration # 1)

partition

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>26</td>
<td>Male</td>
<td>53711</td>
<td>Bronchitis</td>
</tr>
<tr>
<td>27</td>
<td>Male</td>
<td>53710</td>
<td>Broken Arm</td>
</tr>
<tr>
<td>28</td>
<td>Male</td>
<td>53711</td>
<td>Hang Nail</td>
</tr>
</tbody>
</table>

dim = Age

fs

<table>
<thead>
<tr>
<th>Age</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>

splitVal = 26

LHS

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>26</td>
<td>Male</td>
<td>53711</td>
<td>Bronchitis</td>
</tr>
</tbody>
</table>

RHS

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Male</td>
<td>53710</td>
<td>Broken Arm</td>
</tr>
<tr>
<td>28</td>
<td>Male</td>
<td>53711</td>
<td>Hang Nail</td>
</tr>
</tbody>
</table>
Algorithm Example continued

Iteration # 3 (LHS from iteration # 2)

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Male</td>
<td>53711</td>
<td>Flu</td>
</tr>
<tr>
<td>26</td>
<td>Male</td>
<td>53711</td>
<td>Bronchitus</td>
</tr>
</tbody>
</table>

Summary: Age = [25-26] Zip= [53711]

Iteration # 4 (RHS from iteration # 2)

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Male</td>
<td>53710</td>
<td>Broken Arm</td>
</tr>
<tr>
<td>28</td>
<td>Male</td>
<td>53711</td>
<td>Hang Nail</td>
</tr>
</tbody>
</table>

Summary: Age = [27-28] Zip= [53710 - 53711]
Algorithm Example continued

Iteration # 5 (RHS from iteration # 1)

partition

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>ZipCode</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Female</td>
<td>53712</td>
<td>Hepatitis</td>
</tr>
<tr>
<td>27</td>
<td>Female</td>
<td>53712</td>
<td>AIDS</td>
</tr>
</tbody>
</table>

No Allowable Cut

Summary: Age = [25-27] Zip= [53712]
Experiment

- Adult dataset
- Data quality metric (cost metric)
 - Discernability Metric (C_{DM})
 - $C_{DM} = \sum_{\text{EquivalentClasses } E} |E|^2$
 - Assign a penalty to each tuple
 - Normalized Avg. Eqiv. Class Size Metric (C_{AVG})
 - $C_{AVG} = (\text{total}_\text{records}/\text{total}_\text{equiv_classes})/k$
Comparison results

- Full-domain method: Incognito
- Single-dimensional method: K-OPTIMIZE

Figure 10. Quality comparison for Adults database using discernability metric
Data partitioning comparison

(a) Optimal single-dimensional partitioning

(b) Greedy strict multidimensional partitioning
Mondrian