1. **Summary**
 This paper presents a temporal subspace clustering algorithm on multi-variate time series with consideration of the the problems of misalignment and deviating values. Specifically for the misalignment problem, the method adopted by the authors are shifting the time series in terms of a measurement called compactness, instead of using more complicated elastic matching measurement like dynamic time warping, and they showed the results are very good though. For the final clustering part, they designed a multi-stage clustering algorithm with iterative cluster superset generation and refinement phase.

2. **Positive**
 a. They considered the situation of misalignment and noise points, which makes it more suitable for real-world applications.
 b. Experimental design includes both the effects of different model parameters and comparisons with many other approaches on. Results are good with both real-world and synthetic datasets.
 c. Some adapted definitions specific for this problem such as compactness relation, cluster diameter.

3. **Negative**
 a. In their experimental results, it shows the clustering quality of LCSS-based kMedoid is unexpected low. However, they didn't try to explain and analyze what the underlying problem is.
 b. For the kMedoid method, at the beginning the authors said it can employ elastic distance functions like LCSS (Longest Common Sequences) and DTW to relieve the misalignment problem. But they only give the results from the LCSS not DTW.
 c. It seems to assume the sampling rate is constant and consistent.

4. **Research Questions and Points for Discussion**
 a. What's the performance of the proposed RTSC approach on datasets generated with different sampling rate?
 b. Does this approach outperform kMedoid with DTW as distance function?