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ON THE DIFFICULTY OF DESIGNING GOOD CLASSIFIERS
�

MICHELANGELO GRIGNIy , VINCENT MIRELLIz, AND CHRISTOS H. PAPADIMITRIOUx

Abstract. We consider the problem of designing a near-optimal linear decision tree to classify

two given point sets B and W in <n. A linear decision tree de�nes a polyhedral subdivision of

space; it is a classi�er if no leaf region contains points from both sets. We show hardness results

for computing such a classi�er with approximately optimal depth or size in polynomial-time. In

particular, we show that unless NP=ZPP, the depth of a classi�er cannot be approximated within

any constant factor, and that the total number of nodes cannot be approximated within any �xed

polynomial. Our proof uses a simple connection between this problem and graph coloring, and uses

the result of Feige and Kilian on the inapproximability of the chromatic number. We also study the

problem of designing a classi�er with a single inequality that involves as few variables as possible,

and point out certain aspects of the di�culty of this problem.
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1. Introduction. Classifying point sets in <n by linear decision trees is of great

interest in pattern analysis and many other applications [4, 5, 14]. Typically, in such

a problem we are given a set W of white points and a set B of black points in <n,

and we must produce a linear decision tree which classi�es them. That is, the tree

de�nes a linear decision at each internal node, such that for each leaf ` of this tree,

either only white or only black points lead the algorithm to `. We call such a linear

decision tree a classi�er. In many situations W and B are not given explicitly, but

implicitly in terms of concepts, images of objects, etc.

The problem is already well-studied. Constructing a size-optimal classi�er is NP-

complete even in three dimensions [10]; in high dimensions it is NP-complete even

for constant size trees [2, 16]. There is much algorithmic work towards computing

classi�ers that meet various local optimality conditions [4, 17], but very little is known

about how well such local optima approximate the optimal solution. An exception

is the use of random sampling to �nd near-optimal splitting planes in low dimen-

sions [10].

In this paper we prove some very strong negative results on high-dimensional

classifying trees (the important case in practice). We point out a simple connection

between the problem of designing optimal linear classifying trees and the classical

problem of coloring a graph. Given a graph G, we construct its geometric realization;

roughly speaking, the white points are the vertices of the graph arranged at the corners

of a simplex, and the black points correspond to the edges of the graph, with each

black point placed at the midpoint between the two endpoints of its edge. It is not

hard to prove then that the optimum size of any classi�er is the chromatic number of

the graph �(G), while the optimum depth is log2(�(G) + 1). We then use the result

of Feige and Kilian [8] on the inapproximability of the chromatic number, to obtain

these two results:
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Theorem 1.1. Unless NP=ZPP, no polynomial-time algorithm for optimizing

the number of nodes in a classi�er can approximate the optimum within any �xed

polynomial. For � > 0 and large enough dimension n, the approximation ratio is no

better than n1��.

Theorem 1.2. Unless NP=ZPP, no polynomial-time algorithm for optimizing

the depth a classi�er can have approximation ratio better than any �xed constant.

Here ZPP is the class of problems solved by polynomial expected-time randomized

algorithms with neither false negatives nor false positives. NP=ZPP is a situation

almost as unthinkable as NP=P. In the next Section we prove these two results.

Finally, in Section 3 we look at another aspect of the di�culty of optimizing clas-

si�ers: Suppose that the two point sets can be separated by a single linear inequality,

but we want to �nd the inequality that separates them and involves as few variables

as possible. This situation is of interest when we use functions of the points as ad-

ditional coordinates to facilitate classi�cation [4, 11]. We point out that variants of

this problem are hard for various levels of the W hierarchy [3, 6], which implies that

(unless an unlikely collapse occurs), they cannot be solved in polynomial-time even if

the optimum sought is small (bounded by any very slowly growing function).

2. De�nitions and proofs. LetW;B � <n be two point sets. A linear classify-

ing tree for W and B is a decision tree with internal nodes of the form
Pn

i=1 aixi > b,

each with two branches, the true branch and the false branch. A leaf ` of such a tree

corresponds in a straightforward way to a convex cell in a subdivision of <n, call it

C(`), containing all points that satisfy (or falsify) the inequality in each internal node

I that is an ancestor of ` in the tree, and such that ` is in the true (respectively, false)

subtree of I .

There are two important measures of the di�culty of such a classi�er. The �rst is

the number of internal nodes of the tree, and corresponds to the program size of the

classi�er. The other is the depth of the tree, and corresponds to the running time of

the decision algorithm. We denote by d(W;B) the depth of the classi�er for W and

B that has the smallest possible depth among all such classi�ers; similarly, n(W;B)

is the optimum number of internal nodes.
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Fig. 2.1. A two dimensional classi�er.

For example, a classi�er for the two 2-dimensional point sets W and B shown in

Figure 2.1(a) is shown in Figure 2.1(b). The subdivisions corresponding to the leaves
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are also shown in Figure 2.1(a). It has depth two, and a total of three nodes. Here it

is easy to see that d(W;B) = 2 and n(W;B) = 2; thus the tree shown is optimal with

respect to depth, but not with respect to the number of nodes.

Let G = (V;E) be any graph, with vertices V = fv1; : : : ; vng and edges E =

fe1; : : : ; emg. Consider the following two point sets in <n (indeed, on the (n � 1)-

dimensional hyperplane
Pn

i=1 xi = 1): the white set W (G) = fw1; : : : ; wng, where wi
is the ith elementary basis vector (that is, (wi)i = 1 and all other coordinates are zero);

and the black set B(G) = fb1; : : : ; bmg, with bk =
1
2
(wi +wj) where ek = fvi; vjg. In

other words, the white points are the nodes of G placed at the vertices of the simplex,

while the black points are the edges of G, each placed at the midpoint of its two

endpoints.

The chromatic number of G, �(G), is the smallest number of colors that can be

used to color the nodes of G so that no two adjacent nodes have the same color;

equivalently, it is the smallest number of independent sets that can be used to cover

all nodes of G.

The following two lemmata now characterize the complexity of classifyingW (G)

and B(G) in terms of �(G).

Lemma 2.1. n(W (G); B(G)) = �(G).

Proof. Consider any white leaf ` in any decision tree for W (G); B(G). Since

its cell C(`) is convex, it follows that the nodes of G it contains share no edge,

because otherwise the corresponding black midpoint would also be in C(`). Thus,

C(`) contains an independent set of G. Since the leaves of the decision tree must cover

all nodes of G, there are at least �(G) white leaves in any decision tree. In addition

there must be at least one black leaf, and hence there are at least �(G) + 1 leaves

overall, and at least �(G) internal nodes. It follows that n(W (G); B(G)) � �(G).

For the other direction let S1; : : : ; S�(G) be the independent sets in the optimum

coloring of G. We can construct a decision tree with �(G) internal nodes, of which

the kth has the inequality
P

vi2Sk
xi �

2
3
, with the true branch leading to a white

leaf and the false branch leading to either the k + 1st internal node, or a black leaf

if k = �(G). It is easy to see that this is a classi�er for W (G); B(G), and hence

n(W (G); B(G)) � �(G).

Lemma 2.2. dlog2(�(G) + 1)e � d(W (G); B(G)) � dlog2(�(G) + 1)e+ 1.

Proof. The lower bound follows from the previous lemma, since d(W;B) �
dlog2(n(W;B) + 1)e. For the upper bound, consider the optimum coloring of G with

�(G) colors. We let V1 be the union of the �rst b
�(G)

2
c color classes, and let V2 be

the remaining nodes of G. Our �rst inequality is
P

vi2V1
xi �

1
3
, and it separates the

white nodes in two subgraphs, each with about half the chromatic number. Continu-

ing the same way we arrive at nodes that contain white nodes that are independent,

plus certain black nodes; these can be separated with one more internal node. The

total depth is thus dlog2 �((G) + 1)e+ 1.

To prove Theorems 1.1 and 1.2 from the lemmata, we now only need the following

result of Feige and Kilian [8], building on earlier results of Lund and Yannakakis [15]

and F�urer [9]:

Theorem 2.3. Unless NP=ZPP, no polynomial-time algorithm for approximat-

ing the chromatic number of a graph with n nodes can have an approximation ratio

better than n1��, for a �xed � > 0 and large enough n.

In other words, for a given e�cient algorithm and � > 0, there are graphs with

chromatic number n�, such that the algorithm cannot �nd a coloring better than n1��.

Theorem 1.1 then follows from Lemma 2.1 and Theorem 2.3, and Theorem 1.2 follows
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from Lemma 2.2 and Theorem 2.3.

3. Single linear decisions. In this section we point out aspects of the di�culty

of classi�er optimization which hold even in the case in whichW and B are separable,

that is, there is a single linear inequality that separates W from B (in other words, the

optimum classifying tree has just one internal node). In this case we are interested in

minimizing the number of variables that are actually needed in the decision node.

Naturally, the interesting classi�cation problems are not linearly separable; how-

ever, the separable case is practically interesting because it arises when we introduce

\extra variables" to make classi�cation possible. For example, one may introduce low-

degree monomials (products of variables) or radial basis functions (simple functions of

the distance from a point) [11, 13], and then construct a linear decision tree treating

the outputs of these functions as new variables. Or one could even allow more costly

special-purpose classifying heuristics, and also treat their outputs as variables. It is

clear that any disjoint �nite sets W and B may be separated given enough such extra

functions, so the real question is how to minimize their number and cost. Besides

the obvious consideration of computational e�ciency, by the principle of Occam's ra-

zor we expect that optimal classi�ers of this sort are in some sense \better-quality"

classi�ers.

We wish thus to solve the following problem: We are given two point sets W;B �
<n, that we know are separable by a single hyperplane. We are asked to �nd the

hyperplane
Pn

i=1 aixi � b that separates W from B, and such that jfi : ai 6= 0gj is
minimized. In another version (better suited for modeling the case of extra functions),

the �rst m < n variables are free, and we wish to minimize jfi > m : ai 6= 0gj.

We next make a very useful simpli�cation: We assume that B = f0g (that is,

there is only one black point, the origin): Given any classi�cation problem W;B we

can transform it into an equivalent classi�cation problemW �B; f0g where W �B =

fw�b : w 2W and b 2 Bg is the Minkowski di�erence. Thus, we seek the hyperplane

that separates a given point-set W from the origin and has the smallest number of

nonzero coe�cients (respectively, excluding the coe�cients of the �rst m variables).

We call these problems the smallest separating inequality problem, and its version with

free variables.

Both versions of this problem are easily seen to be NP-complete. In this section

we point out their high parameterized complexity. In [3, 6] a theory of parameterized

complexity has been initiated. The issue is whether a minimization problem of the

form \given instance x and integer parameter k, is the optimum k or less?" can be

solved in time, say O(np), where n is the size of the input x, and the hidden constants

(but not p) may depend on k. For some problems, such as bandwidth and node cover,

such algorithms are possible; for others, no such algorithms are known. These latter

problems classify into a hierarchy of classes, denoted W [1];W [2]; : : :, plus an ultimate

class W [P ]. Hardness of a problem (via \parameterized reductions" appropriate for

these problems, see [3]) for such a class is evidence that the problem does not have a

polynomial algorithm even when the parameter is severely bounded. The higher the

class, the more devastating the evidence of intractability.

Theorem 3.1. The smallest separating inequality problem is hard for W [2], and

its version with free variables is hard for W [P ].

Proof. For W [2]-hardness we shall reduce the W [2]-complete hitting set problem

[1, 12] to the minimum separating hyperplane problem. In the hitting set problem

we are given a family F = fS1; : : : ; Skg of subsets of some set f1; 2; : : : ; ng, and a

parameter p, and we are asked to determine whether there is a set H , jH j � p, such
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that H\Si 6= ; for all i. From F we construct a set of pointsW = fw1; : : : ; wkg � <n,

where wi is the characteristic vector of Si. Let
Pn

i=1 aixi = 1 be a hyperplane

separating W from the origin, and let H = fi : ai 6= 0g. If H \ Si = ; for some

i, then the hyperplane fails to separate wi from the origin, and hence the nonzero

coordinates of the hyperplane must be a hitting set. Conversely, for any hitting set

H , the hyperplane
P

i2H xi =
1
2
separates W from the origin. This completes the

proof of the �rst part.

For the second part, we shall reduce to the version of the problem with free

variables the W [P ]-complete minimum monotone circuit value problem [7]. In it we

are given a monotone circuit, and a parameter k, and we wish to determine whether

there is an input vector with k or fewer 1's that makes the output of the circuit 1.

Given such a circuit with n gates, of which all but the �rst m are input gates, we

construct the following point set W in <n: If i is the output gate, we add to W the

point �ei |recall that ei is the unit vector in the ith coordinate. If i is an OR gate

with inputs j and `, then we add to W the point ei � ej � e`. If i is an AND gate

with inputs j and `, then we add to W the points ei� ej and ei� e`. This completes

the construction. It is not very hard to argue that there is a hyperplane separating

W from the origin with k or fewer nonzero coe�cients in its last n�m coordinates, if

and only if the given circuit has a satisfying truth assignment with k or fewer positive

inputs.

Acknowledgments. We wish to thank Mihalis Yannakakis for an interesting

discussion on this problem.
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