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Abstract

The class PPA characterizes search problems whose solution is guaranteed by the

lemma that \every �nite graph with an odd degree vertex has another." The smaller

class PPAD is de�ned similarly for directed graphs. While PPAD has several natural

complete problems corresponding to classical existence theorems in topology, no

such complete problems were known for PPA. Here we overcome the di�culty by

considering non-orientable spaces: Sperner's lemma for non-orientable 3-manifolds

is complete for PPA.
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1 Introduction

Papadimitriou [1] de�ned the class PPA of NP search problems where a so-

lution must exist by a parity lemma: \every �nite graph with an odd-degree

vertex has another." That is, an exponential size graph is de�ned by a Turing

machine which answers adjacency list queries in polynomial time; we are given

one odd-degree vertex, and the search problem is to �nd another. By a simple

reduction, we may assume that the graph has maximum degree two, and the

Turing machine simply returns the list of neighbors of a given node.

The class PPAD is de�ned similarly for directed graphs, and by the same

reduction we may assume that every node has indegree and outdegree at most

one. The search problem becomes: given a directed graph with a known source

(a vertex with an out-edge but no in-edge), �nd another source or a sink. By

ignoring the directions on the edges, we see that PPA contains PPAD.
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The classes PPA and PPAD resemble the earlier class PLS [2], where the goal

is to �nd a local minimum (or maximum) of a cost function on the graph. All

these classes lie within TFNP [3], the class of search problems where a solution

always exists. Since TFNP is unlikely to have complete problems [1], we are

motivated to �nd complete problems for interesting subclasses of TFNP.

Problems in PPA and PPAD have an obvious time-consuming solution: walk

from the given vertex to the other end of its path. It seems likely that PPAD is

strictly contained by PPA, although an actual separation would imply P 6=NP.

As weaker evidence, it is known that PPAG strictly contains PPADG for

generic oracles G [4]. Roughly stated, PPAD problems may be easier because

of the following slight advantage: if you jump to a random vertex, you know

which way to walk to avoid returning to the original source vertex.

This \advantage" occurs naturally in topology: several classical existence re-

sults (Sperner, Brouwer, Kakutani, Borsuk-Ulam, Nash, Arrow-Debreu) have

computational search versions that turn out to be PPAD-complete [1]. How-

ever, no such problems were found complete for PPA. We show that the di-

rected nature of these theorems depends on the orientability of the underlying

topological space: speci�cally, Sperner's Lemma for non-orientable 3-manifolds

is PPA-complete.

2 The Class PPA

Suppose M is a nondeterministic polynomial time Turing machine; on an

input x, M may either fail, or it may succeed with some output string y. M

de�nes a search problem: given x, �nd such a y if one exists. The class of such

search problems is FNP. If we are guaranteed that for every x there exists a

y, then the search problem is total, and lies in the subclass TFNP. However,

this guarantee is nonrecursive, and TFNP apparently has no natural complete

problems. In search of interesting problems inside TFNP, Papadimitriou [1]

de�ned several syntactic subclasses of TFNP with natural complete problems,

where the existence of a solution guaranteed by an \existence lemma."

In particular, the class PPA is based on the parity argument. The class PPA

consists of the following core problems (one for each such machine M), closed

under polynomial time reductions.

For an input string x, the con�guration space C(x) = f0; 1gjxj serves as a

set of graph vertices. We consider polynomial time machines M meeting the

following restrictions for all inputs x:

� For u 2 C(x), M(x; u) returns the list of the neighbors of u as a tuple:
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hv; wi, hvi, or hi (where v < w and v; w 2 C(x)� fug).

� For u; v 2 C(x), v 2 M(x; u) whenever u 2 M(x; v).

� M(x; �0) is a one-tuple (where �0 = 0jxj), so vertex �0 has degree one.

Given x, the search problem is to �nd a degree-one vertex in C(x)� f�0g.

Since PPA is closed under reductions, we may e�ectively search larger graphs

by padding x, and also do further computation to simplify y. Although the

above restrictions on M are nonrecursive, we may get the same class in a

syntactic way by considering a recursive enumeration of machines M with

runtime \sanity{checking" to make their outputs conform to the restrictions.

3 The General Sperner Problem

We need some notions from topology; precise de�nitions may be found in texts

such as [5]. A d-manifold is a topological space covered by open neighborhoods

homeomorphic to the Euclidean space Rd . We also consider d-manifolds with

boundary, where we allow neighborhoods homeomorphic to the half-space fx 2
R
d j x1 � 0g. For example, the M�obius strip (take a long rectangle and identify

the two short sides with opposite orientation, to form a loop with a half-twist)

is a 2-manifold whose boundary is a single loop.

In a Euclidean space, a d-simplex is the convex closure of d+ 1 a�nely inde-

pendent points. A face of a d-simplex is the convex closure of a proper subset

of its corner points, and a facet is a face with d corners. For example a 3-

simplex is a tetrahedron, its four facets are triangles, and its other faces are

points and edges. Within a manifold, a d-simplex is a homeomorphic image of

a Euclidean d-simplex.

Given a d-manifold, a d-triangulation is a �nite collection of d-simplices cover-

ing the manifold, such that each pair of simplices is either disjoint or intersect-

ing on a common face. Each facet is shared by at most two of the d-simplices; if

it appears in only one d-simplex, it is in the boundary (and called a boundary

facet). For example, a cube may be partitioned into six tetrahedra sharing a

diagonal; therefore the cube has a 3-triangulation with eight points and twelve

boundary triangles.

Given a d-triangulation, we may color its points with the colors f0; 1; : : : ; dg.

A full-color simplex is a d-simplex with all d + 1 colors at its corner points,

and a full-color facet is a facet with all the colors f1; : : : ; dg at its corners.

Suppose we are given a d-triangulation, a coloring with no full-color boundary

facet, and a full-color simplex. Then Sperner's Lemma states that there exists

another full-color simplex.
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This follows from the parity argument applied to the graph whose vertices

are the d-simplices, and two d-simplices are adjacent if they share a full-color

facet. This graph has maximum degree two, and the full-color simplices are

exactly the vertices with degree one.

Assuming an e�ective polynomial time presentation of an exponential size

d-triangulation, a coloring, and a known full-color d-simplex (all depending

on x), we get a computational search problem SPERNER, which lies in PPA

by the preceding argument. Furthermore, if the triangulation is e�ectively

orientable, so that we can e�ciently compute the orientation of any facet,

then the graph is directed (with no degree-2 source or sink), and this restricted

version of SPERNER lies in PPAD. For a special case where our manifold is a

tetrahedron and the triangulation depends only on jxj, Papadimitriou showed

that SPERNER is PPAD-complete.

4 The Construction

Here we show that a special case of SPERNER is hard for PPA. This argument

uses several elements from the result of Papadimitriou, in particular the \tri-

colored tubes." First we �x a space and a standard triangulation, depending

only on an even size parameter N .

We choose a non-orientable 3-manifoldX homeomorphic to the product of the

M�obius strip and the closed unit interval I = [0; 1]. We construct X from the

unit cube I3 by identifying the boundary points (0; x2; x3) and (1; 1� x2; x3)

for all (x2; x3) 2 I2; call these points in X the \orientation-reversing face."

The remaining faces of the cube form the boundary of X; in our colorings all

boundary points will get color 0. Let X inherit the coordinates from I3. We

remark that any non-orientable 3-manifold contains a subset homeomorphic

to X in the neighborhood of an orientation-reversing path.

Given N even, we de�ne a regular triangulation of X of size �(N3). Begin

with a partition of the unit cube into N3 cubelets of side-length 1=N . Further

partition the cubelets with all cutting planes of the form xi � xj = 2k=N ,

where 1 � i < j � 3 and k is an integer (Figure 1(a)). Each cubelet is cut

into six tetrahedra (as in the cube example of the previous section), and these

tetrahedra de�ne a triangulation of both I3 and X.

An instance of this restricted SPERNER problem is a polynomial time Turing

machine S describing a 4-coloring of the vertices of the triangulation. More

precisely, for an input x, N = 2p(jxj) (for some polynomial p encoded in S)

and for each i; j; k 2 f0; : : : ; Ng, S(x; i; j; k) 2 f0; 1; 2; 3g is the color of the

point at coordinates (i=N; j=N; k=N), with the restriction that S(x; 0; j; k) =

4



1

32

(a) (b)

Fig. 1. The N = 4 triangulation, and a tri-color tube.

S(x;N;N�j; k). Furthermore, there will be a full-color simplex at some known

position.

The coloring we construct will have color 0 almost everywhere (thought of

as transparent), with the other three colors appearing in tri-colored tubes as

in Figure 1(b). These tubes are de�ned by a piece-wise linear center lines

(taking occasional right turns) and a �(1=N) radius large enough so that no

cubelet, and hence no tetrahedron, can be full-colored except at an end of a

tube. Also the tubes must be su�ciently thin to avoid accidental overlapping;

these constraints will lower bound N . For de�niteness say that the wedge of

color 3 always points in the +x3 direction, thus the two wedges of color 1

and 2 swap places (in the x2 direction) whenever a tube passes through the

orientation-reversing face.

Given a PPA problem de�ned by a polytime machine M as in Section 2, we

must construct a polytime machine S so that for each input x: from a solution

of the SPERNER problem de�ned by S on x, in polynomial time we can

recover a solution to the PPA problem de�ned by M on x.

First we sketch the construction. Given x, for each vertex v in the con�guration

space f0; 1gjxj we associate some point pv in X. Furthermore, we route tubes

between these points in a simple enough manner so that given a point q =

(i=N; j=N; k=N) 2 X (with coordinates inherited from I3), a polytime machine

can �nd whether some tube contains q, and hence its color.

A tri-colored tube has a local orientation from I3, and insideX this orientation

reverses precisely when the tube passes through the orientation-reversing face.

In the neighborhood of each pv there is at most one potential in-tube and a

matching potential out-tube. If v has degree one, that is M(x; v) = hui, then

we use only the out-tube to reach pu. If v has degree two, sayM(x; v) = hu; wi,

then we use the out-tube to reach pu and the in-tube to reach pw. The di�culty

here is that since M describes an undirected graph, it could happen that

M(x; u) = hv; ti, so the tube between pu and pw must be an out-tube at both

ends. Our remedy is to use the orientation reversing face: such out-out (and

in-in) connecting tubes must pass through the orientation-reversing face in

order to have the required local orientations at their two endpoints.
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Fig. 2. Tubes from pv when M(x; v) = hv; wi.

At this point, almost any reasonable tube routing arrangement will work; we

require that the tubes avoid accidental intersections, and that we can e�ciently

decide which tube, if any, contains a given point. We propose the following

simple scheme (more clever schemes could greatly improve the resulting N).

For each vertex v in the con�guration space f0; 1gjxj, interpret v as an integer

in the range 0 to C�1, where C = 2jxj. Furthermore, let l(v; w) 2 f1; : : : ;
�
C

2

�
g

be a numbering of the unordered pairs, so that l(v; w) = l(w; v).

For each v let its point in X be pv = (1=2; (v + C)=4C; 1=4). If pv needs an

out-tube towards some pu (that is, M(x; v) is hui or hu; wi), route its initial

segment \upwards" by increasing x3, reaching pov = (1=2; (v + C)=4C; 1=4 +

l(v; u)=C2). Similarly if pv needs an in-tube towards pw, route this tube by

�rst increasing x1 by one (wrapping through the orientation-reversing face),

and then up to the point piv = (1=2; (3C�v)=4C; 1=4+ l(v; w)=C2). Note that

since the in-tube wrapped around, they are now both locally \out" oriented

(Figure 2).

Now to �nish realizing an edge fv; wg, with v < w, we connect the two tubes

inside the slice x3 = 1=4 + l(v; w)=C2. These may have started as in-tubes or

out-tubes at pv and pw, but they are now both out-tubes reaching p0
v (one of p

i
v

or pov) and p0
w (one of piw or pow). This out-out connection must pass once more

through the orientation reversing face: starting at p0
v, increasing x1 by 3=4

(wrapping around), adjust x2 to match p0
w, and �nally increase x1 by another

1=4 to close the connection. Note this path also avoids the other x3-parallel

tubes passing through this slice.

Note that there is at least one unterminated tube, in the neighborhood of p�0,

which has one out-tube and no in-tube. This gives us the known starting full-

color simplex for SPERNER. We need N = �(C2) to have enough di�erent x3

coordinates to realize all these tubes. Most importantly, by simply examining
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the coordinates of a point in X, we can quickly identify at least one of the two

vertices (if any) involved in a tube containing the point, and then by consulting

M , we can �nd the other endpoint and decide whether a tube contains the

given point.

There are further technical issues: what is the appropriate radius of the tubes,

particularly in neighborhoods of right turns; and how to slowly rotate the tube

colors if necessary. These issues are already addressed by Papadimitriou.

5 Open Problems

We have seen that Sperner's lemma becomes (at least in the oracular set-

ting) strictly more powerful when applied to a non-orientable space; is there

a more general transformation of PPAD-complete problems to PPA-complete

versions? In particular, is some non-orientable variation of Brouwer's �xed-

point theorem complete for PPA?

We would still like a natural complete problem for either PPA or PPAD that

does not have an explicit Turing machine in the input. The most promising

candidate still seems to be SMITH: given a Hamiltonian cycle in a graph with

all nodes of odd degree, �nd another.
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