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Abstract. We explore a new general-purpose heuristic for �nding high-

quality solutions to hard optimization problems. The method, called ex-

tremal optimization, is inspired by \self-organized criticality," a concept

introduced to describe emergent complexity in many physical systems.

In contrast to Genetic Algorithms which operate on an entire \gene-

pool" of possible solutions, extremal optimization successively replaces

extremely undesirable elements of a sub-optimal solution with new, ran-

dom ones. Large 
uctuations, called \avalanches," ensue that e�ciently

explore many local optima. Drawing upon models used to simulate far-

from-equilibrium dynamics, extremal optimization complements approxi-

mation methods inspired by equilibrium statistical physics, such as simu-

lated annealing.With only one adjustable parameter, its performance has

proved competitive with more elaborate methods, especially near phase

transitions. Those phase transitions are found in the parameter space of

most optimization problems, and have recently been conjectured to be

the origin of some of the hardest instances in computational complex-

ity. We will demonstrate how extremal optimization can be implemented

for a variety of combinatorial optimization problems. We believe that

extremal optimization will be a useful tool in the investigation of phase

transitions in combinatorial optimization problems, hence valuable in

elucidating the origin of computational complexity.

1 Natural Emergence of Optimized Con�gurations

Every day, enormous e�orts are devoted to organizing the supply and demand

of limited resources, so as to optimize their utility. Examples include the supply

of foods and services to consumers, the scheduling of a transportation 
eet, or

the 
ow of information in communication networks within society or within a

parallel computer. By contrast, without any intelligent organizing facility, many

natural systems have evolved into amazingly complex structures that optimize

the utilization of resources in surprisingly sophisticated ways [2]. For instance,

biological evolution has developed e�cient and strongly interdependent networks

in which resources rarely go to waste. Even the inanimate morphology of natural

landscapes exhibits patterns far from random that often seem to serve a purpose,

such as the e�cient drainage of water [31].

? e-mail: stb@physics.emory.edu
?? e-mail: percus@lanl.gov

? ? ? e-mail: mic@mathcs.emory.edu



2

Natural systems that exhibit such self-organizing qualities often possess com-

mon features: they generally consist of a large number of strongly coupled enti-

ties with very similar properties. Hence, they permit a statistical description at

some coarse level. An external resource (sunlight in the case of evolution) drives

the system which then takes its direction purely by chance. Like 
owing water

breaking through the weakest of all barriers in its wake, species are coupled in

a global comparative process that persistently washes away the least �t. In this

process, unlikely but highly adapted structures surface inadvertently. Optimal

adaptation thus emerges naturally, without divine intervention, from the dy-

namics through a selection against the extremely \bad". In fact, this process

prevents the in
exibility inevitable in a controlled breeding of the \good".

Certain models relying on extremal processes have been proposed to explain

self-organizing systems in nature [28]. In particular, the Bak-Sneppen model of

biological evolution is based on this principle [3, 10]. It is happily devoid of any

speci�city about the nature of interactions between species, yet produces salient

nontrivial features of paleontological data such as broadly distributed lifetimes

of species, large extinction events, and punctuated equilibrium.

In the Bak-Sneppen model, the high degree of adaptation of most species is

obtained by the elimination of badly adapted ones instead of a particular \en-

gineering" of better ones. Species in the Bak-Sneppen model are located on the

sites of a lattice, and each is represented by a value between 0 and 1, indicating

its \�tness". At each update step, the smallest value (representing the worst

adapted species) is discarded and replaced with a new value drawn randomly

from a 
at distribution on [0; 1]. But the change in �tness of one species im-

pacts the �tness of an interrelated species. Therefore, at each update step in

the Bak-Sneppen model, the �tness values on the sites neighboring the small-

est value are replaced with new random numbers as well. No explicit de�nition

is given of the mechanism by which these neighboring species are related. Yet,

after a certain number of updates, the system organizes itself into a highly cor-

related state known as self-organized criticality (SOC) [4]. In that state, almost

all species have reached a �tness above a certain threshold. These species pos-

sess punctuated equilibrium: one's weakened neighbor can undermine one's own

�tness. Co-evolutionary chain reactions called \avalanches" ensue; large 
uctu-

ations that make any possible con�guration accessible.

2 Extremal Optimization

Extremal Optimization (EO) is inspired by previous attempts of using physical

intuition to optimize. It opens the door to applying non-equilibrium processes,

such as SOC, in the same manner simulated annealing (SA) [23] applies equilib-

rium statistical mechanics. The result is a general method that appears to be a

powerful addition to the canon of meta-heuristics [27]. Its large 
uctuations pro-

vide signi�cant hill-climbing ability, which enables EO to perform well at phase

transitions, \where the really hard problems are" [11, 1].
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One popular hard optimization problem, to which we have applied EO suc-

cessfully (see below and Refs. [8, 7]), is the graph bi-partitioning problem (GBP)

[14, 23, 21]. In the GBP, we are given a set of n vertices, where n is even, and

\edges" connecting certain pairs of vertices. The problem is to partition the ver-

tices into two equal subsets, each of size n=2, with a minimal number of edges

cutting across the partition. The size of the con�guration space 
 grows expo-

nentially with n, j
j =
�

n
n=2

�
, since all unordered divisions of n vertices into

to equal-sized sets are feasible con�gurations S. The cost function C(S) (called
\cutsize") counts the number of \bad" edges that cut across the partition. A typ-

ical neighborhoodN(S) for a local search [27, 30], mapping S ! S0 2 N(S) � 
,
is a \1-exchange" of one randomly chosen vertex from each subset.

EO performs in general a search on a single con�guration S 2 
. S usually

consists of a large number n of variables xi. The cost C(S) is assumed to consist

of the individual cost contributions �i for each variable xi, which correspond

loosely to the \�tness" values in the Bak-Sneppen model above. Typically, the

�tness �i of variable xi depends on its state in relation to other variables that

xi is connected to. Ideally, it is

C(S) =

nX
i=1

�i: (1)

For example, in the GBP the variables xi are the vertices, each being assigned

to a set \0" or \1." Each vertex has edges connecting it to a certain number of

other vertices. Eq. (1) for the cutsize C(S) is satis�ed, if we attribute to each

vertex xi a local cost �i = bi=2, where bi is the number of \bad" edges, whose

cost is equally shared with the vertex on the other end of that edge.

For minimization problems in general, EO proceeds as follows:

1. Initialize a con�guration S at will; set Sbest = S.
2. For the \current" con�guration S,

(a) evaluate �i for each variable xi,
(b) �nd j with �j � �i for all i, i. e. xj has the \worst �tness,"
(c) choose at random a S0 2 N(S) such that the \worst" xj must

change its state,

(d) if C(S0) < C(Sbest) then set Sbest = S0,
(e) accept S  S0 always, independent of C(S0)� C(S).

3. Repeat at step (2) as long as desired.

4. Return Sbest and C(Sbest).

The algorithm operates on a single con�guration S at each step. All vari-

ables xi in S have a �tness, of which the \worst" is identi�ed. This ranking of

the variables according to individual costs { unique to EO { provides the only

measure of quality on S. It implies that all other variables are \better" in the

current S. There is no parameter to be adjusted for the selection of better solu-

tions aside from this ranking. In fact, it is only the memory encapsulated in this

ranking that directs EO into the neighborhood of increasingly better solutions.

Those \better" variables only possess punctuated equilibrium: their memory
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Fig. 1. Evolution of the cutsize C(S) during a typical run of (a) EO and (b) SA for

the n = 500, c � 5, random graph G500 introduced in Ref. [21]. The best cutsize ever

found for G500 is 206 (see Fig. 2). In contrast to SA, which has large 
uctuations in

early stages of the run and then converges much later, extremal optimization quickly

approaches a stage where broadly distributed 
uctuations allow it to scale barriers and

probe many local optima.

gets erased when they happen to be connected to one of the variables forced

to change. On the other hand, in the choice of move to S0, no consideration to

the outcome of such a move is given, and not even the worst variable itself is

guaranteed to improve its �tness. Large 
uctuations in the cost accumulate over

many updates [3], while merely the bias against \bad" �tnesses guides EO back

towards improved solutions, see Fig. 1.

Disadvantages of EO are that a de�nition of �tness for individual variables

may be ambiguous or even impossible. Also, variables may be strongly connected

such that each update destroys more well-adapted variables than it could ever

hope to improve [8]. In highly connected systems, EO is slowed down consider-

ably by reevaluating �tnesses [step (2a)]. For many problems, these disadvan-

tages do not apply or are surmountable. In particular, problems in the important

optimization class MAX-SNP [29] �t naturally into the EO-framework. MAX-

SNP problems have boolean variables and a collection of bounded-arity boolean

terms and we seek an assignment satisfying as many (or as few) terms as possi-

ble. Such problems have a natural choice of �tness functions, and typically have

low variable connectivity. Indeed, some complete problems for the class have

bounded connectivity in the worst case. MAX-SNP complete problems include

MAX-K-SAT, K-COL, and MAXCUT (similar to GBP), discussed below.

3 Comparison with other Heuristics

The most apparent distinction between EO and other methods is the need to

de�ne local cost contributions for each variable, instead of merely a global cost.1

1 Apparently, local costs have previously been used in an otherwise unrelated ensemble

Monte Carlo approach [12].
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EO's capability appears to derive from its ability to access this local information

directly. EO's ranking of �tnesses super�cially appears like the rankings of pos-

sible moves in some versions of SA [17, 30] and in Tabu search [15, 30]. But these

moves are evaluated by their anticipated outcome, while EO's �tnesses re
ect

the current con�guration S without biasing the outcome.

Simulated Annealing (SA): SA [23] emulates the behavior of frustrated sys-

tems in thermal equilibrium: if one couples such a system to a heat bath of

adjustable temperature, by cooling the system slowly one may come close to at-

taining a state of minimal energy (i. e. cost). SA accepts or rejects local changes

to a con�guration according to the Metropolis algorithm, requiring equilibrium

conditions (\detailed balance") along a well-tuned \temperature schedule."

In contrast, EO drives the system far from equilibrium: aside from ranking,

it applies no decision criteria, and all new con�gurations are accepted indiscrim-

inately. Instead of tuning a whole schedule of parameters, EO often requires few

choices. It may appear that EO's results should resemble an ine�ective random

search, similar to SA at a �xed but �nite temperature. But in fact, by persistent

selection against the worst �tnesses, one quickly approaches near-optimal solu-

tions. Signi�cant 
uctuations still remain at late run-times (unlike in SA, see

Fig. 1), crossing sizable barriers to access new regions in con�guration space.

Genetic Algorithms (GA): While similarly motivated, GA [20, 16] and EO

algorithms have hardly anything in common. GAs, mimicking evolution on the

genotypical level, keep track of entire \gene pools" of con�gurations from which

to select and \breed" an improved generation of solutions. By comparison, EO,

based on evolutionary competition at the phenomenological level of \species,"

operates only on a single con�guration, with improvements achieved merely by

elimination of bad variables. EO, SA, and most other meta-heuristics perform a

local search but in GA cross-over operators perform global exchanges.

4 Applications of Extremal Optimization

Ground States of Spin Glasses: A simple version of a spin glass [25] consists

of a d-dimensional hyper-cubic lattice with a spin variable �i 2 f�1; 1g placed
on each site i, 1 � i � n = Ld. Every spin is connected to each of its nearest

neighbors j via a bond variable Ji;j drawn from some distribution P (J) of zero
mean and unit variance. Spins may be coupled to an arbitrary external �eld hi.
We try to �nd \ground states," i. e. lowest energy con�gurations Smin of

C(S) = H(�1; : : : ; �n) = �
1

2

X
i

X
j

Ji;j�i�j �
X
i

�ihi: (2)

Arranging the spins into optimal con�gurations is hard due to \frustration" [25].

To implement EO, we de�ne as �tness the local energy for each spin

�i = ��i

0
@1

2

X
j

Ji;j�j + hi

1
A ; (3)
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and Eq. (2) turns into Eq. (1). Our implementation suggests that EO may be

well suited for problems representable as a spin-Hamiltonian [25].

Satis�ability (MAX-K-SAT): Instances of the satis�ability problem MAX-

K-SAT consist of a formula composed of M clauses. Each clause contains K
literals (i. e. xi or :xi), drawn randomly from a pool of n boolean variables xi.
A clause is veri�ed, if at least one of its K literals is true (logical \or"), and the

entire formula is veri�ed only if every clause is true (logical \and"). Here, we try

to maximize the number of true clauses by some con�guration of the variables.

MAX-K-SAT has an obvious EO-implementation: For each variable we set

�i = 1=K � f# of false clauses containing xig. Again, Eq. (1) holds. Typically,
K = O(1) and M = O(n) so that each variable appears only in a few (�M=n)
clauses, each connecting it to � K other variables. The phase transition in 2-

SAT and 3-SAT has been investigated in Refs. [26, 1] on small instances using

exact methods. We expect that EO would perform very well on those instances.

Graph Coloring (K-COL): Given K di�erent colors to label the vertices of a

graph, we need to �nd a coloring that minimizes the number of edges connecting

vertices of identical color. We implement EO for K-COL by de�ning for each

vertex the number of equally colored vertices connected to it as �tness. Similar

to a spin glass, this problem is hard due to local frustration [25], in distinction

to the global constraints in the GBP. A simple neighborhood consists of the

re-coloring of a single vertex each update. Below, we present results of using EO

in analyzing the phase transition in 3-COL, �rst investigated in Refs. [11, 1].

5 Experimental Results

Simple EO Application to Graph Partitioning: Following Ref. [21] (Fig. 9

there), we tested early implementations of EO [8] on their n = 500 random graph

G500 of connectivity c � 5. In a 1000-run sample from di�erent random initial

conditions, we determined the frequency of solution obtained, see Fig. 2. For

comparison, we have also implemented the SA algorithm as given in Ref. [21] on

the same data structure used by our EO program. We have allowed runtimes for

EO about three times longer than the time it took for SA to \freeze," since EO

still obtained signi�cant gains. We checked that neither the best-of-three runs

of SA, or a three times longer temperature schedule, improved the SA results

signi�cantly.While the basic, parameter-free version of EO from Sec. 2 is already

competitive, the best results are obtained by � -EO.

�-EO Implementation: � -EO is a general modi�cation of EO which improves

results and avoids \dead ends" that occur in some implementations at the ex-

pense of introducing a single parameter [8]. We rank all the variables xi according
to �tness �i, i. e. �nd a permutation � of the vertex labels i such that

��(1) � ��(2) � : : : � ��(n): (4)

The worst variable xj [see step (2b)] is of rank 1, j = �(1), and the best variable

is of rank n. Consider a probability distribution over the ranks k,

Pk / k�� ; 1 � k � n; (5)
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Fig. 2. Comparison of 1000-run trials using various optimization methods on a n = 500

random graph with c = 5. The histograms give the frequency with which a particular

cutsize has been obtained during the trial runs for (A) SA, (B) basic EO, and (C)

for � -EO with � = 1:5. The best cutsize ever found for this graph is 206. This result

appeared only once over the 1000 SA runs, but occurred 80 times for � -EO.

for a �xed value of the parameter � . On each update, for each independent

variable x to be moved, select distinct ranks k1; k2; : : : according to Pk. Then,
execute step (2c) such that all xi1 ; xi2 ; : : : with i1 = �(k1); i2 = �(k2); : : :
change. For instance, in the bi-partitioning problem, we choose both variables

in the 1-exchange according to Pk, instead of the worst and a random one.

Although the worst variable of rank i = 1 will be chosen most often, sometimes

(much) higher ranks will be updated instead. In fact, the choice of a power-law

distribution2 for Pk ensures that no rank gets excluded from further evolution

while maintaining a bias against variables with bad �tness.

Clearly, for � = 0, � -EO is exactly a random walk through 
. Conversely,
for � ! 1, the process approaches a deterministic local search, only swapping

the lowest-ranked variables, and is bound to reach a \dead end." Indeed, tests of

both, � = 0 and � =1, yield terrible results! In the GBP, we obtained our best

solutions for � � 1:4� 1:6. Under preliminary testing we �nd that there may be

a link between the optimal choice for the parameter � and a transition to \non-

ergodic" behavior in the sense that for larger values of � certain con�gurations

in 
 may become inaccessible during the time of a complete EO-run. In fact,

on the basis of that observation we have developed an argument to approximate

� � 1+ln(A)= ln(n) [9] where t = An with 1� A� n is the runtime. (Typically,

we use A � 102 for graphs of size n � 104, consistent with � = 1:5.) Tests with
longer runtimes indeed favor larger � values, while larger graphs require smaller

values of � .

Results on Large Graphs: In Tab. 1 we summarize � -EO's results on large-n
graphs, using � = 1:4 and best-of-10 runs. On each graph, we used as many

update steps t as appeared productive for EO to reliably obtain stable results.

This varied with the particularities of each graph, from t = 2n to 200n, and the

reported runtimes are of course in
uenced by this. It is worth noting, though,

that EO's average performance has been varied. For instance, half of the Brack2

2 instead of, say, an exponential distribution with a cut-o� scale excluding high ranks.
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Table 1. Best cutsizes (and allowed runtime) for a testbed of large graphs. GA results

are the best reported [24] (with a 300MHz CPU). � -EO results are from our runs

(200MHz). Comparison data for three of the large graphs are due to results from

heuristics in Ref. [19] (50MHz). METIS is a partitioning program based on hierarchical

reduction instead of local search [22], obtaining extremely fast deterministic results

(200MHz). Runtimes comparisons here are at best qualitative.

Large Graph GA � -EO [19] METIS

Hammond (n = 4720; c = 5:8) 90 (1s) 90 (42s) 97 (8s) 92 (0s)

Barth5 (n = 15606; c = 5:8) 139 (44s) 139 (64s) 146 (28s) 151 (0.5s)

Brack2 (n = 62632; c = 11:7) 731 (255s) 731 (12s) | 758 (4s)

Ocean (n = 143437; c = 5:7) 464 (1200s) 464 (200s) 499 (38s) 478 (6s)

runs returned cutsizes near 731, but the other half returned cutsizes of above

2000. This may be a product of an unusual structure in these particular graphs.

Phase Transitions in Combinatorial Optimization: In extensive numeri-

cal studies [7] we have shown that � -EO outperforms SA near phase transi-

tions where graphs begin to \percolate" and cutsizes �rst become non-zero, see

Fig. 3. Studies on the average rate of convergence towards better-cost con�gura-

tions as a function of runtime t indicate power-law convergence [18], roughly like

C(Sbest)t � C(Smin)+A t�� with � � 0:45. Of course, it is not easy to assert for
graphs of large n that those runs in fact converge close to the optimum C(Smin),

but �nite-size scaling analysis seems to justify that expectation [9].

In an even more impressive performance, we used EO to completely enu-

merate all optimal solutions Smin near the critical point for random graphs in

3-COL. Instances of random graphs typically have a high ground-state degener-

acy, i. e. possess a large number of equally optimal solutions Smin. In Ref. [26] it

was shown that at the phase transition of 3-SAT the fraction of constrained vari-
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Fig. 3. Plot of the error in the best result of SA relative to EOs on identical instances

of (a) random graphs and (b) geometric graphs as function of the mean connectivity

c. The percolation points are at (a) c = 1 [13] and (b) c � 4:5 [5], the critical points

for the GBP (the �rst time a component of size > n=2 appears) are slightly above that

[e. g. at c = 2 ln 2 = 1:386 for (a)]. SA's error relative to EO near the critical point in

each case rises with n.
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Fig. 4. Plot of the average (a) cutsize and (b) backbone fraction as a function of the

connectivity c for random graph 3-COL. We have generated 2; 300, 500, 280 and 125

instances for n = 32, 64, 128, and 256, respectively, at each value of c. The prediction

for the critical point of ccrit(3) � 4:73 is indicated by a vertical line. The backbone

fraction seems to develop a �nite jump at the critical point for n!1.

ables, i. e. those that are found in an identical state in all Smin, discontinuously

jumps to a non-zero value. It was conjectured that the �rst-order phase tran-

sition in this \backbone" would exist for any NP-hard problem. To test those

claims for 3-COL, we generated a large number of random graphs and explored


 for as many ground states as � -EO could �nd. We �xed runtimes at � 100n2,
well above the times needed to saturate the set of all Smin in repeated trails

on some test instances. Such long runtimes favored a large value of � = 2:7.
For each instance, we measured the cutsize, entropy, and the \backbone." Due

to the symmetry under interchanging colors, the backbone here consists of the

fraction of constrained pairs of vertices, i. e. those which are in the same relative

state (same or opposite color) in all ground states. Averaged results are given

in Figs. 4a-b. As predicted in Ref. [26], asymptotically for large n the backbone

fraction seems to jump discontinuously at the critical connectivity, ccrit � 4:73.
This work was supported in part by the URC at Emory University, NSF grant

CCR-9820931, and an LDRD grant from Los Alamos National Laboratory.
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