1. Find \(\sum_{n=2}^{\infty} \frac{n^2 - 2n - 4}{n^4 + 4n^2 + 16} \).

2. Evaluate \(\int_0^2 \frac{(16-x^2)x}{16 - x^2 + \sqrt{(4-x)(4+x)(12+x^2)}} \, dx \).

3. Find the least positive integer \(n \) such that \(2^{2014} \) divides \(19^n - 1 \).

4. Suppose we are given a 19 × 19 chessboard (a table with 19^2 squares) and remove the central square. Is it possible to tile the remaining 19^2 − 1 = 360 squares with 4 × 1 and 1 × 4 rectangles? (So each of the 360 squares is covered by exactly one rectangle.) Justify your answer.

5. Let \(n \geq 1 \) and \(r \geq 2 \) be positive integers. Prove that there is no integer \(m \) such that \(n(n+1)(n+2) = m^r \).

6. Let \(S \) denote the set of 2 by 2 matrices with integer entries and determinant 1, and let \(T \) denote those matrices of \(S \) which are congruent to the identity matrix \(I \) mod 3 (so \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in T \) means that \(a, b, c, d \in \mathbb{Z}, ad - bc = 1 \), and 3 divides \(b, c, a - 1, d - 1 \); “\(\in \)” means “is in”).

 (a) Let \(f : T \to \mathbb{R} \) (the real numbers) be a function such that for every \(X, Y \in T \) with \(Y \neq I \), either \(f(XY) > f(X) \) or \(f(XY^{-1}) > f(X) \) (or both). Show that given two finite nonempty subsets \(A, B \) of \(T \), there are matrices \(a \in A \) and \(b \in B \) such that if \(a' \in A \), \(b' \in B \) and \(a'b' = ab \), then \(a' = a \) and \(b' = b \).

 (b) Show that there is no \(f : S \to \mathbb{R} \) such that for every \(X, Y \in S \) with \(Y \neq \pm I \), either \(f(XY) > f(X) \) or \(f(XY^{-1}) > f(X) \).
7. Let A, B be two points in the plane with integer coordinates $A = (x_1, y_1)$ and $B = (x_2, y_2)$. (Thus $x_i, y_i \in \mathbb{Z}$, for $i = 1, 2$.) A path $\pi: A \to B$ is a sequence of **down** and **right** steps, where each step has an integer length, and the initial step starts from A, the last step ending at B. In the figure below, we indicated a path from $A_1 = (4, 9)$ to $B_1 = (10, 3)$. The distance $d(A, B)$ between A and B is the number of such paths. For example, the distance between $A = (0, 2)$ and $B = (2, 0)$ equals 6. Consider now two pairs of points in the plane $A_i = (x_i, y_i)$ and $B_i = (u_i, z_i)$ for $i = 1, 2$, with integer coordinates, and in the configuration shown in the picture (but with arbitrary coordinates):

- $x_2 < x_1$ and $y_1 > y_2$, which means that A_1 is North-East of A_2; $u_2 < u_1$ and $z_1 > z_2$, which means that B_1 is North-East of B_2.
- Each of the points A_i is North-West of the points B_j, for $1 \leq i, j \leq 2$. In terms of inequalities, this means that $x_i < \min\{u_1, u_2\}$ and $y_i > \max\{z_1, z_2\}$ for $i = 1, 2$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure.png}
\caption{Diagram of points A_1, A_2, B_1, and B_2.}
\end{figure}

(a) Find the distance between two points A and B as before, as a function of the coordinates of A and B. Assume that A is North-West of B.

(b) Consider the 2×2 matrix $M = \begin{pmatrix} d(A_1, B_1) & d(A_1, B_2) \\ d(A_2, B_1) & d(A_2, B_2) \end{pmatrix}$. Prove that for any configuration of points A_1, A_2, B_1, B_2 as described before, $\det M > 0$.