Holomorphic Projection and Mock Modular Forms

Michael H. Mertens
Emory University
San Antonio, January 11, 2015
1 Introduction
- Mock modular forms
- Holomorphic projection

2 Applications
- Construction of mock modular forms
- Class number type relations for Fourier coefficients
- Shifted convolution L-functions and their special values
1 Introduction
 • Mock modular forms
 • Holomorphic projection

2 Applications
 • Construction of mock modular forms
 • Class number type relations for Fourier coefficients
 • Shifted convolution L-functions and their special values
The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \setminus \{1\}$ for $\Gamma_0(N)$ is the holomorphic part \mathcal{M}^{+} of a harmonic Maass form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^{!}(\Gamma_0(N))$, the shadow of f, s.t. $\mathcal{M} = f + g^{*}$ with

$$g^{*}(\tau) := \int_{-\tau}^{\infty} \frac{g(-\bar{z})}{(z + \tau)^{k}} \, dz$$

transforms like a modular form of weight k under $\Gamma_0(N)$.

Appear in combinatorial q-series (e.g. partition ranks) quantum black holes and wall crossing umbral moonshine...
The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \setminus \{1\}$ for $\Gamma_0(N)$ is the holomorphic part M^+ of a harmonic Maaß form M, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^!(\Gamma_0(N))$, the shadow of f, s.t. $M = f + g^*$ with

$$g^*(\tau) := \int_{-\tau}^{\infty} \frac{g(-\bar{z})}{(z + \tau)^k} dz$$

transforms like a modular form of weight k under $\Gamma_0(N)$.

Appear in...
The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2}\mathbb{Z} \setminus \{1\}$ for $\Gamma_0(N)$ is the holomorphic part \mathcal{M}^+ of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M^{!}_{2-k}(\Gamma_0(N))$, the shadow of f, s.t. $\mathcal{M} = f + g^*$ with

$$g^*(\tau) := \int_{-\tau}^{\infty} \frac{g(-\bar{z})}{(z + \tau)^k} dz$$

transforms like a modular form of weight k under $\Gamma_0(N)$.

Appear in

- combinatorial q-series (e.g. partition ranks)
The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2}\mathbb{Z} \setminus \{1\}$ for $\Gamma_0(N)$ is the holomorphic part \mathcal{M}^+ of a harmonic Maaß form \mathcal{M}, i.e. there is a weakly holomorphic modular form $g \in M^!_{2-k}(\Gamma_0(N))$, the shadow of f, s.t. $\mathcal{M} = f + g^*$ with

$$g^*(\tau) := \int_{-\tau}^{\infty} \frac{g(-\bar{z})}{(z + \tau)^k} dz$$

transforms like a modular form of weight k under $\Gamma_0(N)$.

Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing
The modern definition

Definition 1

A mock modular form \(f \) of weight \(k \in \frac{1}{2} \mathbb{Z} \setminus \{1\} \) for \(\Gamma_0(N) \) is the holomorphic part \(\mathcal{M}^+ \) of a harmonic Maaß form \(\mathcal{M} \), i.e. there is a weakly holomorphic modular form \(g \in M_{2-k}^!(\Gamma_0(N)) \), the shadow of \(f \), s.t. \(\mathcal{M} = f + g^* \) with

\[
g^*(\tau) := \int_{-\tau}^{\infty} \frac{g(-z)}{(z + \tau)^k} \, dz
\]

transforms like a modular form of weight \(k \) under \(\Gamma_0(N) \).

Appear in

- combinatorial \(q \)-series (e.g. partition ranks)
- quantum black holes and wall crossing
- umbral moonshine
The modern definition

Definition 1

A mock modular form f of weight $k \in \frac{1}{2} \mathbb{Z} \setminus \{1\}$ for $\Gamma_0(N)$ is the holomorphic part M^+ of a harmonic Maaß form M, i.e. there is a weakly holomorphic modular form $g \in M_{2-k}^!(\Gamma_0(N))$, the shadow of f, s.t. $M = f + g^*$ with

$$g^*(\tau) := \int_{-\tau}^\infty \frac{g(-z)}{(z + \tau)^k} dz$$

transforms like a modular form of weight k under $\Gamma_0(N)$.

Appear in

- combinatorial q-series (e.g. partition ranks)
- quantum black holes and wall crossing
- umbral moonshine
- ...

1 Introduction
 - Mock modular forms
 - Holomorphic projection

2 Applications
 - Construction of mock modular forms
 - Class number type relations for Fourier coefficients
 - Shifted convolution L-functions and their special values
Idea of holomorphic projection

- \(\Phi : \mathbb{H} \rightarrow \mathbb{C} \) continuous, transforming like a modular form of weight \(k \geq 2 \) for some \(\Gamma_0(N) \), moderate growth at cusps (Attention for \(k = 2! \)).
Idea of holomorphic projection

- $\Phi : \mathbb{H} \to \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_0(N)$, moderate growth at cusps (Attention for $k = 2!$).
- The map $f \mapsto \langle f, \Phi \rangle$ defines a linear functional on $S_k(\Gamma_0(N))$.

This $\tilde{\Phi}$ is (essentially) the holomorphic projection of Φ.
Idea of holomorphic projection

- $\Phi : \mathbb{H} \to \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_0(N)$, moderate growth at cusps (Attention for $k = 2$!).
- The map $f \mapsto \langle f, \Phi \rangle$ defines a linear functional on $S_k(\Gamma_0(N))$.
- $\Rightarrow \exists! \tilde{\Phi} \in S_k(\Gamma_0(N))$ s.t. $\langle \cdot, \Phi \rangle = \langle \cdot, \tilde{\Phi} \rangle$
Idea of holomorphic projection

- \(\Phi : \mathbb{H} \to \mathbb{C} \) continuous, transforming like a modular form of weight \(k \geq 2 \) for some \(\Gamma_0(N) \), moderate growth at cusps (Attention for \(k = 2 \)).
- The map \(f \mapsto \langle f, \Phi \rangle \) defines a linear functional on \(S_k(\Gamma_0(N)) \).
- \(\Rightarrow \exists! \tilde{\Phi} \in S_k(\Gamma_0(N)) \) s.t. \(\langle \cdot, \Phi \rangle = \langle \cdot, \tilde{\Phi} \rangle \)
- This \(\tilde{\Phi} \) is (essentially) the **holomorphic projection** of \(\Phi \).
Idea of holomorphic projection

- $\Phi : \mathbb{H} \to \mathbb{C}$ continuous, transforming like a modular form of weight $k \geq 2$ for some $\Gamma_0(N)$, moderate growth at cusps (Attention for $k = 2$).
- The map $f \mapsto \langle f, \Phi \rangle$ defines a linear functional on $S_k(\Gamma_0(N))$.
- $\Rightarrow \exists! \tilde{\Phi} \in S_k(\Gamma_0(N))$ s.t. $\langle \cdot, \Phi \rangle = \langle \cdot, \tilde{\Phi} \rangle$
- This $\tilde{\Phi}$ is (essentially) the **holomorphic projection** of Φ.
- same reasoning works for regularized Petersson inner product \rightsquigarrow regularized holomorphic projection.
Fourier coefficients

Definition 2

If \(\Phi(\tau) = \sum_{n \in \mathbb{Z}} a_\Phi(n, y)q^n \), \((y = \text{Im}(\tau)) \), then

\[
(\pi_{\text{hol}} f)(\tau) := (\pi_{\text{hol}}^k f)(\tau) := \sum_{n=0}^{\infty} c(n)q^n, \text{ where}\]

\[
c(n) = \frac{(4\pi n)^{k-1}}{(k-2)!} \int_0^\infty a_\Phi(n, y)e^{-4\pi ny}y^{k-2}dy, \quad n > 0.
\]
Properties of holomorphic projection

Proposition

- If Φ is holomorphic, then $\pi_{hol} \Phi = \Phi$.
Proposition

- If Φ is holomorphic, then $\pi_{hol}\Phi = \Phi$.
- If Φ transforms like a modular form of weight $k \in \frac{1}{2}\mathbb{Z}, k > 2$, on some group $\Gamma \leq \text{SL}_2(\mathbb{Z})$, then $\pi_{hol}\Phi \in M_k(\Gamma)$.

Remark

For $k = 2$, $\pi_{hol}\Phi$ is a quasi-modular form of weight 2. For the regularized holomorphic projection, weakly holomorphic forms are possible images.
Properties of holomorphic projection

Proposition

- If Φ is holomorphic, then $\pi_{hol} \Phi = \Phi$.
- If Φ transforms like a modular form of weight $k \in \frac{1}{2} \mathbb{Z}, k > 2$, on some group $\Gamma \leq \text{SL}_2(\mathbb{Z})$, then $\pi_{hol} \Phi \in M_k(\Gamma)$.
- The operator π_{hol} commutes with all the operators $U(N)$, $V(N)$, and $S_{N,r}$ (sieving operator).
Properties of holomorphic projection

Proposition
- If Φ is holomorphic, then $\pi_{hol}\Phi = \Phi$.
- If Φ transforms like a modular form of weight $k \in \frac{1}{2}\mathbb{Z}$, $k > 2$, on some group $\Gamma \leq \text{SL}_2(\mathbb{Z})$, then $\pi_{hol}\Phi \in M_k(\Gamma)$.
- The operator π_{hol} commutes with all the operators $U(N)$, $V(N)$, and $S_{N,r}$ (sieving operator).

Remark
- For $k = 2$, $\pi_{hol}\Phi$ is a quasi-modular form of weight 2.
Properties of holomorphic projection

Proposition
- If \(\Phi \) is holomorphic, then \(\pi_{hol} \Phi = \Phi \).
- If \(\Phi \) transforms like a modular form of weight \(k \in \frac{1}{2} \mathbb{Z}, \ k > 2 \), on some group \(\Gamma \leq \text{SL}_2(\mathbb{Z}) \), then \(\pi_{hol} \Phi \in M_k(\Gamma) \).
- The operator \(\pi_{hol} \) commutes with all the operators \(U(N), \ V(N), \) and \(S_{N,r} \) (sieving operator).

Remark
- For \(k = 2 \), \(\pi_{hol} \Phi \) is a quasi-modular form of weight 2.
- For the regularized holomorphic projection, weakly holomorphic forms are possible images.
Table of Contents

1 Introduction
 • Mock modular forms
 • Holomorphic projection

2 Applications
 • Construction of mock modular forms
 • Class number type relations for Fourier coefficients
 • Shifted convolution L-functions and their special values
A modification of holomorphic projection

Lemma 1 (S. Zwegers)

For any translation-invariant function $\Phi : \mathbb{H} \to \mathbb{C}$ and $1 < k \in \frac{1}{2}\mathbb{Z}$ we have

$$\pi_{hol}^{(k)}(\Phi)(\tau) = \frac{(k-1)(2i)^k}{4\pi} \int_{\mathbb{H}} \frac{\Phi(z)y^k}{(\tau-z)^k} \frac{dxdy}{y^2},$$ \hspace{1cm} (1)

provided that the right-hand side converges absolutely.
A modification of holomorphic projection

Lemma 1 (S. Zwegers)

For any translation-invariant function $\Phi : \mathbb{H} \to \mathbb{C}$ and $1 < k \in \frac{1}{2}\mathbb{Z}$ we have

$$
\pi_{hol}^{(k)}(\Phi)(\tau) = \frac{(k - 1)(2i)^k}{4\pi} \int_{\mathbb{H}} \frac{\Phi(z)y^k}{(\tau - \bar{z})^k} \frac{dx dy}{y^2},
$$

(1)

provided that the right-hand side converges absolutely.

Lemma 2 (S. Zwegers)

Provided the rhs of (1) converges absolutely for $k \in \frac{1}{2}\mathbb{Z}$, then we have

$$
(\pi_{hol}^{(k)}(\Phi)|_{k\gamma} = \pi_{hol}^{(k)}(\Phi|_{k\gamma})
$$

for all $\gamma \in \text{SL}_2(\mathbb{Z})$.

In particular this holds if $|\Phi(\tau)|y^r$ is bounded on \mathbb{H} for some r and $k > r + 1 > 1$.
Lemma

Let

\[\xi_k := 2i y^k \frac{\partial}{\partial \tau}. \]

Then it holds

- \(\xi_{2-k} g^* \doteq g \)
The ξ-operator

Lemma

Let

$$\xi_k := 2iy^k \frac{\partial}{\partial \tau}.$$

Then it holds

1. $\xi_{2-k}g^* \equiv g$
2. $(\xi_{2-k}g)|_{k\gamma} = \xi_{2-k}(g|_{2-k\gamma})$ for all $\gamma \in \text{SL}_2(\mathbb{Z})$.

Proposition 1 (S. Zwegers)

Let Φ be as in Lemma 2. If $\pi(k) \text{hol} \Phi = 0$ and $\xi_k \Phi$ is modular of weight $2-k$ for some $\Gamma_0(N)$, then Φ is modular of weight k.

M.H. Mertens (Emory University)
Holomorphic Projection
01/11/2015 11 / 23
The ξ-operator

Lemma

Let

$$\xi_k := 2iy^k \frac{\partial}{\partial \tau}.$$

Then it holds

- $\xi_{2-k}g^* = g$
- $(\xi_{2-k}g)|_{k\gamma} = \xi_{2-k}(g|_{2-k\gamma})$ for all $\gamma \in SL_2(\mathbb{Z})$.

Proposition 1 (S. Zwegers)

Let Φ be as in Lemma 2. If $\pi_{hol}^{(k)} \Phi = 0$ and $\xi_k \Phi$ is modular of weight $2 - k$ for some $\Gamma_0(N)$, then Φ is modular of weight k.
Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form \(g \in \mathcal{M}_k^!(\Gamma_0(N)) \) \((k \neq 1)\) is the shadow of a mock modular form of weight \(2 - k\).
Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in M_k^!(\Gamma_0(N))$ ($k \neq 1$) is the shadow of a mock modular form of weight $2 - k$.

Proof.
Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in \mathcal{M}_k^!(\Gamma_0(N))$ ($k \neq 1$) is the shadow of a mock modular form of weight $2 - k$.

Proof.

- multiply the Eichler integral g^* of g by a sufficiently large power of $\Delta(\tau) = q \prod_{n \geq 1} (1 - q^n)^{24}$, say h with weight ℓ, to ensure weight and growth conditions.
Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form $g \in M^1_k(\Gamma_0(N))$ ($k \neq 1$) is the shadow of a mock modular form of weight $2 - k$.

Proof.

- Multiply the Eichler integral g^* of g by a sufficiently large power of $\Delta(\tau) = q \prod_{n \geq 1} (1 - q^n)^{24}$, say h with weight ℓ, to ensure weight and growth conditions.

- By Proposition 1, $M := \pi_{hol}^{(2-k+\ell)}(g^*h) - g^*h$ is modular of weight $2 - k + \ell$ for $\Gamma_0(N)$.

Surjectivity of the shadow map

Proposition (J. H. Bruinier and J. Funke)

Every weakly holomorphic modular form \(g \in \mathcal{M}_k^!(\Gamma_0(N)) \) \((k \neq 1)\) is the shadow of a mock modular form of weight \(2 - k\).

Proof.

- multiply the Eichler integral \(g^* \) of \(g \) by a sufficiently large power of \(\Delta(\tau) = q \prod_{n \geq 1} (1 - q^n)^{24} \), say \(h \) with weight \(\ell \), to ensure weight and growth conditions.
- by Proposition 1, \(\tilde{M} := \pi_{hol}^{(2-k+\ell)} (g^* h) - g^* h \) is modular of weight \(2 - k + \ell\) for \(\Gamma_0(N) \).
- \(\tilde{M} = \frac{1}{h} M + g^* \) is the desired mock modular form.
Class number relations

\[\sigma_k(n) := \sum_{d | n} d^k, \quad \lambda_k(n) := \frac{1}{2} \sum_{d | n} \min\left(d, \frac{n}{d}\right)^k. \]

\[\sum_{s \in \mathbb{Z}} H(4n - s^2) + 2\lambda_1(n) = 2\sigma_1(n), \]
Class number relations

\[\sigma_k(n) := \sum_{d|n} d^k, \quad \lambda_k(n) := \frac{1}{2} \sum_{d|n} \min \left(d, \frac{n}{d} \right)^k. \]

\[\sum_{s \in \mathbb{Z}} H(4n - s^2) + 2\lambda_1(n) = 2\sigma_1(n), \]

\[\sum_{s \in \mathbb{Z}} (s^2 - n)H(4n - s^2) + 2\lambda_3(n) = 0, \]
Class number relations

\[\sigma_k(n) := \sum_{d \mid n} d^k, \quad \lambda_k(n) := \frac{1}{2} \sum_{d \mid n} \min\left(d, \frac{n}{d}\right)^k. \]

\[\sum_{s \in \mathbb{Z}} H(4n - s^2) + 2\lambda_1(n) = 2\sigma_1(n), \]

\[\sum_{s \in \mathbb{Z}} (s^2 - n) H(4n - s^2) + 2\lambda_3(n) = 0, \]

\[\sum_{s \in \mathbb{Z}} (s^4 - 3ns^2 + n^2) H(4n - s^2) + 2\lambda_5(n) = 0, \]
Class number relations

\[\sigma_k(n) := \sum_{d | n} d^k, \quad \lambda_k(n) := \frac{1}{2} \sum_{d | n} \min \left(d, \frac{n}{d} \right)^k. \]

\[\sum_{s \in \mathbb{Z}} H(4n - s^2) + 2\lambda_1(n) = 2\sigma_1(n), \]

\[\sum_{s \in \mathbb{Z}} (s^2 - n)H(4n - s^2) + 2\lambda_3(n) = 0, \]

\[\sum_{s \in \mathbb{Z}} (s^4 - 3ns^2 + n^2)H(4n - s^2) + 2\lambda_5(n) = 0, \]

...
Class number relations

\[
\sigma_k(n) := \sum_{d|n} d^k, \quad \lambda_k(n) := \frac{1}{2} \sum_{d|n} \min \left(d, \frac{n}{d} \right)^k.
\]

\[n \text{ odd} \]
\[
\sum_{s \in \mathbb{Z}} H(n - s^2) + \lambda_1(n) = \frac{1}{3} \sigma_1(n)
\]
\[
\sum_{s \in \mathbb{Z}} (4s^2 - n) H(n - s^2) + \lambda_3(n) = 0,
\]
\[
\sum_{s \in \mathbb{Z}} (16s^4 - 12ns^2 + n^2) H(n - s^2) + \lambda_5(n)
\]
\[
= -\frac{1}{12} \sum_{n=x^2+y^2+z^2+t^2} (x^4 - 6x^2y^2 + y^4),
\]
...

M.H. Mertens (Emory University) Holomorphic Projection 01/11/2015 14 / 23
Theorem (D. Zagier)

The function

\[\mathcal{H}(\tau) := \sum_{n=0}^{\infty} H(n) q^n \]

is a mock modular form of weight \(\frac{3}{2} \) for \(\Gamma_0(4) \). Its shadow is (up to a constant factor) the classical theta function

\[\vartheta(\tau) := \sum_{n \in \mathbb{Z}} q^{n^2}. \]
Connection to mock modular forms

Theorem (D. Zagier)

The function

\[\mathcal{H}(\tau) := \sum_{n=0}^{\infty} H(n)q^n \]

is a mock modular form of weight \(\frac{3}{2} \) for \(\Gamma_0(4) \). Its shadow is (up to a constant factor) the classical theta function

\[\vartheta(\tau) := \sum_{n \in \mathbb{Z}} q^{n^2}. \]

All the above relations can be formulated as

\[c_\nu [\mathcal{H}(\tau), \vartheta]_\nu |U(4) + 2 \sum_{n=1}^{\infty} \lambda_{2\nu+1}(n)q^n \in \begin{cases} \tilde{M}_2(\text{SL}_2(\mathbb{Z})) & \text{if } \nu = 0, \\ S_{2+2\nu}(\text{SL}_2(\mathbb{Z})) & \text{if } \nu > 0. \end{cases} \]
The function

$$H(\tau) := \sum_{n=0}^{\infty} H(n) q^n$$

is a mock modular form of weight $\frac{3}{2}$ for $\Gamma_0(4)$. Its shadow is (up to a constant factor) the classical theta function

$$\vartheta(\tau) := \sum_{n \in \mathbb{Z}} q^{n^2}.$$

All the above relations can be formulated as

$$\tilde{c}_\nu[\mathcal{H}(\tau), \vartheta]_\nu | S_{2,1} + \sum_{n=0}^{\infty} \lambda_{2\nu+1} (2n + 1) q^{2n+1} \in \begin{cases} M_2(\Gamma_0(4)) & \text{if } \nu = 0, \\ S_{2+2\nu}(\Gamma_0(4)) & \text{if } \nu > 0. \end{cases}$$
Mock theta functions

Definition 3

A mock modular form \(f \) is called a mock theta function if its shadow is a linear combination of unary theta functions either of the form

\[
\psi_{s,\chi}(\tau) := \sum_{n \in \mathbb{Z}} \chi(n) q^{sn^2}
\]

\((s \in \mathbb{N}, \chi \text{ an even character})\) of weight \(\frac{1}{2} \) (i.e., \(f \) has weight \(\frac{3}{2} \)) or of the form

\[
\theta_{s,\chi}(\tau) := \sum_{n \in \mathbb{Z}} \chi(n) n q^{sn^2}
\]

\((s \in \mathbb{N}, \chi \text{ an odd character})\) of weight \(\frac{3}{2} \) (i.e. \(f \) has weight \(\frac{1}{2} \)).
Let \(f \) be a mock theta function of weight \(\kappa \in \{ \frac{1}{2}, \frac{3}{2} \} \) and \(g \in M_{2-\kappa}(\Gamma) \) be a l.c. of theta functions with \(\Gamma = \Gamma_1(4N) \) for some \(N \in \mathbb{N} \) and fix \(\nu \in \mathbb{N} \). Then there is a finite linear combination \(L_{f,g}^{\nu} \) of functions of the form

\[
\Lambda_{s,t}^{\chi,\psi}(\tau; \nu) = \sum_{r=1}^{\infty} \left(2 \sum_{\substack{sm^2 - tn^2 = r \\ m,n \geq 1}} \chi(m)\psi(n)(\sqrt{sm} - \sqrt{tn})^{2\nu+1} \right) q^r
\]

\[
+ \psi(0) \sum_{r=1}^{\infty} \chi(r)(\sqrt{sr})^{2\nu+1} q^{sr^2}
\]

with \(s, t \in \mathbb{N} \) and \(\chi, \psi \) are characters as in Definition 3 of conductors \(F(\chi) \) and \(F(\psi) \) respectively with \(sF(\chi)^2, tF(\psi)^2 | N \), such that \([f, g]_\nu + L_{f,g}^{\nu} \) is a (quasi)-modular form of weight \(2\nu + 2 \) (possibly weakly holomorphic).
Table of Contents

1 Introduction
 - Mock modular forms
 - Holomorphic projection

2 Applications
 - Construction of mock modular forms
 - Class number type relations for Fourier coefficients
 - Shifted convolution L-functions and their special values
Let $f_1 \in S_{k_1}(\Gamma_0(N))$ and $f_2 \in S_{k_2}(\Gamma_0(N))$ with

$$f_i(\tau) = \sum_{n=1}^{\infty} a_i(n) q^n.$$
Let $f_1 \in S_{k_1}(\Gamma_0(N))$ and $f_2 \in S_{k_2}(\Gamma_0(N))$ with
\[
f_i(\tau) = \sum_{n=1}^{\infty} a_i(n)q^n.
\]

shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)
\[
D(f_1, f_2, h; s) := \sum_{n=1}^{\infty} \frac{a_1(n + h)a_2(n)}{n^s}.
\]
Let $f_1 \in S_{k_1}(\Gamma_0(N))$ and $f_2 \in S_{k_2}(\Gamma_0(N))$ with

$$f_i(\tau) = \sum_{n=1}^{\infty} a_i(n)q^n.$$

shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)

$$D(f_1, f_2, h; s) := \sum_{n=1}^{\infty} \frac{a_1(n + h)a_2(n)}{n^s}.$$

symmetrized shifted convolution Dirichlet series

$$\hat{D}^{(0)}(f_1, f_2, h; s) := D(f_1, f_2, h; s) - D(f_2, f_1, -h; s),$$
Notation

- Let $f_1 \in S_{k_1}(\Gamma_0(N))$ and $f_2 \in S_{k_2}(\Gamma_0(N))$ with
 $$f_i(\tau) = \sum_{n=1}^{\infty} a_i(n)q^n.$$

- **shifted convolution Dirichlet series** (Hoffstein-Hulse, 2013)
 $$D(f_1, f_2, h; s) := \sum_{n=1}^{\infty} \frac{a_1(n + h) a_2(n)}{n^s}.$$

- **symmetrized shifted convolution Dirichlet series**
 $$\hat{D}(0)(f_1, f_2, h; s) := D(f_1, f_2, h; s) - D(f_2, f_1, -h; s),$$

- **generating function of special values**
 $$\mathbb{L}(0)(f_1, f_2; \tau) := \sum_{h=1}^{\infty} \hat{D}(0)(f_1, f_2, h; k_1 - 1)q^h.$$
Notation

- Let \(f_1 \in S_{k_1}(\Gamma_0(N)) \) and \(f_2 \in S_{k_2}(\Gamma_0(N)) \) with
\[
f_i(\tau) = \sum_{n=1}^{\infty} a_i(n)q^n.
\]

- shifted convolution Dirichlet series (Hoffstein-Hulse, 2013)
\[
D(f_1, f_2, h; s) := \sum_{n=1}^{\infty} \frac{a_1(n + h)a_2(n)}{n^s}.
\]

- symmetrized shifted convolution Dirichlet series
\[
\hat{D}^{(0)}(f_1, f_2, h; s) := D(f_1, f_2, h; s) - D(f_2, f_1, -h; s),
\]

- generating function of special values
\[
\mathbb{L}^{(0)}(f_1, f_2; \tau) := \sum_{h=1}^{\infty} \hat{D}^{(0)}(f_1, f_2, h; k_1 - 1)q^h.
\]

- There is also a \(\hat{D}^{(\nu)} \) and \(\mathbb{L}^{(\nu)} \) for \(\nu \in \mathbb{N}_0 \) (more complicated).
A numerical conundrum

\[L^{(0)}(\Delta, \Delta; \tau) = -33.383\ldots q + 266.439\ldots q^2 - 1519.218\ldots q^3 + 4827.434\ldots q^4 - \ldots \]
A numerical conundrum

\[L^{(0)}(\Delta, \Delta; \tau) = -33.383\ldots q + 266.439\ldots q^2 - 1519.218\ldots q^3 + 4827.434\ldots q^4 - \ldots \]

- define real numbers \(\alpha = 106.10455\ldots \) and \(\beta = 2.8402\ldots \), and the weight 12 weakly holomorphic modular form

\[
\sum_{n=-1}^{\infty} r(n)q^n := -\Delta(\tau)(j(\tau)^2 - 1464j(\tau) - \alpha^2 + 1464\alpha),
\]
A numerical conundrum

\[I^{(0)}(\Delta, \Delta; \tau) = -33.383\ldots q + 266.439\ldots q^2 - 1519.218\ldots q^3 + 4827.434\ldots q^4 - \ldots \]

- define real numbers \(\alpha = 106.10455\ldots \) and \(\beta = 2.8402\ldots \), and the weight 12 weakly holomophic modular form

\[
\sum_{n=-1}^{\infty} r(n)q^n := -\Delta(\tau)(j(\tau)^2 - 1464j(\tau) - \alpha^2 + 1464\alpha),
\]

- play around a bit and find

\[
- \frac{\Delta}{\beta} \left(\frac{65520}{691} + \frac{E_2}{\Delta} - \sum_{n \neq 0} r(n)n^{-11}q^n \right)
\]

\[= -33.383\ldots q + 266.439\ldots q^2 - 1519.218\ldots q^3 + 4827.434\ldots q^4 - \ldots \]
The theorem

Theorem 2 (M.-Ono)

If $0 \leq \nu \leq \frac{k_1 - k_2}{2}$, then

$$\mathbb{L}^{(\nu)}(f_2, f_1; \tau) = -\frac{1}{(k_1 - 2)!} \cdot [\mathcal{M}_{f_1}^+, f_2]_\nu + F,$$

where $F \in \tilde{M}^{!}_{2\nu + 2-k_1+k_2}(\Gamma_0(N))$. Moreover, if \mathcal{M}_{f_1} is good for f_2, then $F \in \tilde{M}_{2\nu + 2-k_1+k_2}(\Gamma_0(N))$.

M.H. Mertens (Emory University)
Theorem 2 (M.-Ono)

If $0 \leq \nu \leq \frac{k_1 - k_2}{2}$, then

$$\mathbb{L}(\nu)(f_2, f_1; \tau) = -\frac{1}{(k_1 - 2)!} \cdot [\mathcal{M}_{f_1}^+, f_2]_\nu + F,$$

where $F \in \widetilde{\mathcal{M}}_{2\nu+2-k_1+k_2}^!(\Gamma_0(N))$. Moreover, if \mathcal{M}_{f_1} is good for f_2, then $F \in \widetilde{\mathcal{M}}_{2\nu+2-k_1+k_2}(\Gamma_0(N))$.

- \mathcal{M}_{f_1} is a harmonic Maaß form with shadow f_1. \mathcal{M}_{f_1} is good for f_2 if $[\mathcal{M}_{f_1}^+, f_2]_\nu$ grows at most polynomially at all cusps (very rare phenomenon).
The theorem

Theorem 2 (M.-Ono)

If \(0 \leq \nu \leq \frac{k_1 - k_2}{2} \), then

\[
\mathbb{L}^{(\nu)}(f_2, f_1; \tau) = -\frac{1}{(k_1 - 2)!} \cdot [\mathcal{M}^+_f, f_2]_\nu + F,
\]

where \(F \in \widetilde{M}_2^!\nu + 2 - k_1 + k_2(\Gamma_0(N)) \). Moreover, if \(\mathcal{M}_{f_1} \) is good for \(f_2 \), then \(F \in \widetilde{M}_2^!\nu + 2 - k_1 + k_2(\Gamma_0(N)) \).

- \(\mathcal{M}_{f_1} \) is a harmonic Maa\ß form with shadow \(f_1 \). \(\mathcal{M}_{f_1} \) is good for \(f_2 \) if \([\mathcal{M}^+_f, f_2]_\nu \) grows at most polynomially at all cusps (very rare phenomenon).
- \(\widetilde{M}_k^!(\Gamma_0(N)) \) is the weakly holomorphic extension of

\[
\widetilde{M}_k(\Gamma_0(N)) = \begin{cases}
M_k(\Gamma_0(N)) & \text{if } k \geq 4, \\
\mathbb{C}E_2 \oplus M_2(\Gamma_0(N)) & \text{if } k = 2.
\end{cases}
\]
An example

Let \(f_1 = f_2 = \Delta = \frac{1}{\beta} P(1, 12, 1; \tau) \)
Let $f_1 = f_2 = \Delta = \frac{1}{\beta} P(1, 12, 1; \tau)$

$$
\beta := \frac{(4\pi)^{11}}{10!} \cdot \|P(1, 12, 1)\|^2 = 1 + 2\pi \sum_{c=1}^{\infty} \frac{K(1, 1, c)}{c} \cdot J_{11}(4\pi/c) = 2.8402 \ldots
$$
An example

Let $f_1 = f_2 = \Delta = \frac{1}{\beta} P(1, 12, 1; \tau)$

$$\beta := \frac{(4\pi)^{11}}{10!} \cdot \|P(1, 12, 1)\|^2 = 1 + 2\pi \sum_{c=1}^{\infty} \frac{K(1, 1, c)}{c} \cdot J_{11}(4\pi/c) = 2.8402 \ldots$$

$$Q(-1, 12, 1; \tau) = Q^+(-1, 12, 1; \tau) + Q^-(1, 12, 1; \tau) \in H_{-10}(\text{SL}_2(\mathbb{Z})), \text{ the canonical preimage of } P(1, 12, 1; \tau) \text{ under } \xi_{-10} \text{ (up to a constant factor), is good for } \Delta$$
Let \(f_1 = f_2 = \Delta = \frac{1}{\beta} P(1, 12, 1; \tau) \)

\[
\beta := \frac{(4\pi)^{11}}{10!} \cdot \|P(1, 12, 1)\|^2 = 1 + 2\pi \sum_{c=1}^{\infty} \frac{K(1, 1, c)}{c} \cdot J_{11}(4\pi/c) = 2.8402 \ldots
\]

\(Q(-1, 12, 1; \tau) = Q^+(-1, 12, 1; \tau) + Q^-(-1, 12, 1; \tau) \in H_{-10}(SL_2(\mathbb{Z})) \), the canonical preimage of \(P(1, 12, 1; \tau) \) under \(\xi_{-10} \) (up to a constant factor), is good for \(\Delta \)

\[
\mathbb{L}^{(0)}(\Delta, \Delta; \tau) = \frac{Q^+(-1, 12, 1; \tau) \cdot \Delta(\tau)}{11! \cdot \beta} - \frac{E_2(\tau)}{\beta}
\]

\[
= -33.383 \ldots q + 266.439 \ldots q^2 - 1519.218 \ldots q^3 + 4827.434 \ldots q^4 - \ldots
\]
Thank you for your attention.