Preconditioning

Noisy, Ill-Conditioned Linear Systems

James G. Nagy
Emory University
Atlanta, GA

Outline

1. The Basic Problem
2. Regularization / Iterative Methods
3. Preconditioning
4. Example: Image Restoration
5. Summary
Basic Problem

Linear system of equations

\[b = Ax \]

where

- \(A, b \) are known
- \(A \) is large, structured
- Goal: Compute an approximation of \(x \)
Basic Problem

Linear system of equations

\[\mathbf{b} = A\mathbf{x} + \mathbf{e} \]

where

- \(A, \mathbf{b} \) are known
- \(A \) is large, structured, **ill-conditioned**
- Goal: Compute an approximation of \(\mathbf{x} \)
Basic Problem

Linear system of equations

\[b = Ax + e \]

where

- \(A, b \) are known
- \(A \) is large, structured, \textit{ill-conditioned}
- Goal: Compute an approximation of \(x \)

Applications: Ill-posed inverse problems.

- Geomagnetic Prospecting
- Tomography
- Image Restoration
Basic Problem

Linear system of equations

\[b = Ax + e \]

where

- \(A, b \) are known
- \(A \) is large, structured, ill-conditioned
- Goal: Compute an approximation of \(x \)

Applications: Ill-posed inverse problems.

- Geomagnetic Prospecting
- Tomography
- **Image Restoration**
 - \(b = \) observed image
 - \(A = \) blurring matrix (structured)
 - \(e = \) noise
 - \(x = \) true image
Basic Problem

Linear system of equations

\[\mathbf{b} = A\mathbf{x} + \mathbf{e} \]

where

- \(A, \mathbf{b} \) are known
- \(A \) is large, structured, ill-conditioned
- Goal: Compute an approximation of \(\mathbf{x} \)

Applications: Ill-posed inverse problems.
- Geomagnetic Prospecting
- Tomography
- **Image Restoration**
 - \(\mathbf{b} = \) observed image
 - \(A = \) blurring matrix (structured)
 - \(\mathbf{e} = \) noise
 - \(\mathbf{x} = \) true image

Example →
Computational difficulties revealed through SVD:

Let \(A = U\Sigma V^T \) where

- \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_N) \), \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_N \geq 0 \)
- \(U^T U = I \), \(V^T V = I \)
Basic Problem – Properties

Computational difficulties revealed through SVD:

Let \(A = U\Sigma V^T \) where

- \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_N) \), \(\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_N \geq 0 \)
- \(U^TU = I \), \(V^TV = I \)

For ill-posed inverse problems,

- \(\sigma_1 \approx 1 \), small singular values cluster at 0
- small singular values \(\Rightarrow \) oscillating singular vectors
Inverse solution for noisy, ill-posed problems:

If $A = U\Sigma V^T$, then

$$x = A^{-1}b$$

$$= V\Sigma^{-1}U^Tb$$

$$= \sum_{i=1}^{n} \frac{u_i^Tb}{\sigma_i}v_i$$
Inverse solution for noisy, ill-posed problems:

If $A = U \Sigma V^T$, then

$$\hat{x} = A^{-1}(b + e)$$

$$= V \Sigma^{-1} U^T (b + e)$$

$$= \sum_{i=1}^{n} \frac{u_i^T (b + e)}{\sigma_i} v_i$$
Inverse solution for noisy, ill-posed problems:

If \(A = U \Sigma V^T \), then

\[
\hat{x} = A^{-1}(b + e)
\]

\[
= V \Sigma^{-1} U^T (b + e)
\]

\[
= \sum_{i=1}^{n} \frac{u_i^T (b + e)}{\sigma_i} v_i
\]

\[
= \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i + \sum_{i=1}^{n} \frac{u_i^T e}{\sigma_i} v_i
\]

\[
= x + \text{error}
\]
Inverse solution for noisy, ill-posed problems:

If \(A = U \Sigma V^T \), then

\[
\hat{x} = A^{-1}(b + e) \\
= V \Sigma^{-1} U^T (b + e) \\
= \sum_{i=1}^{n} \frac{u_i^T(b + e)}{\sigma_i} v_i \\
= \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i + \sum_{i=1}^{n} \frac{u_i^T e}{\sigma_i} v_i \\
= x + \text{error}
\]
Regularization

Basic Idea: Filter out effects of small singular values.

\[
x_{\text{reg}} = \sum_{i=1}^{n} \phi_i \frac{u_i^T b}{\sigma_i} v_i
\]

where the ”filter factors” satisfy

\[
\phi_i \approx \begin{cases}
1 & \text{if } \sigma_i \text{ is large} \\
0 & \text{if } \sigma_i \text{ is small}
\end{cases}
\]
Some regularization methods:

1. Truncated SVD

\[x_{\text{tsvd}} = \sum_{i=1}^{k} \frac{u_i^T b}{\sigma_i} v_i \]

2. Tikhonov

\[x_{\text{tik}} = \sum_{i=1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + \alpha^2} \frac{u_i^T b}{\sigma_i} v_i \]

3. Wiener

\[x_{\text{wien}} = \sum_{i=1}^{n} \frac{\delta_i \sigma_i^2}{\delta_i \sigma_i^2 + \gamma_i^2} \frac{u_i^T b}{\sigma_i} v_i \]
Iterative Regularization

Basic idea:

• Use an iterative method (e.g., conjugate gradients)

• Terminate iteration before theoretical convergence:
 – Early iterations reconstruct solution.
 – Later iterations reconstruct noise.
Iterative Regularization

Basic idea:
• Use an iterative method (e.g., conjugate gradients)

• Terminate iteration before theoretical convergence:
 – Early iterations reconstruct solution.
 – Later iterations reconstruct noise.

Some important methods:
• CGLS, LSQR, GMRES

• MR2 (Hanke, ’95)

• MRNSD (Kaufman, ’93; N., Strakos, ’00)
Iterative Regularization

Efficient for large problems, provided

1. Multiplication with A is not expensive.

2. Convergence is rapid enough.
Iterative Regularization

Efficient for large problems, provided

1. Multiplication with A is not expensive.

 Image restoration \Leftrightarrow Use FFTs

2. Convergence is rapid enough.

 - CGLS, LSQR, GMRES, MR2 often fast, especially for severely ill-posed, noisy problems.
 - MRNSD based on steepest descent, typically converges very slowly.
Iterative Regularization

Efficient for large problems, provided

1. Multiplication with A is not expensive.

 Image restoration \iff Use FFTs

2. Convergence is rapid enough.

 - CGLS, LSQR, GMRES, MR2 often fast, especially for severely ill-posed, noisy problems.

 - MRNSD based on steepest descent, typically converges very slowly.

Example →
Preconditioning

Purposes of preconditioning:

1. Accelerate convergence.

 • Apply iterative method to $P^{-1}Ax = P^{-1}b$.

Preconditioning

Purposes of preconditioning:

1. Accelerate convergence.
 - Apply iterative method to $P^{-1}Ax = P^{-1}b$.
 - In this case we minimize $\|x\|_2$.

2. Enforce regularization constraint on solution.
 (Hanke, '92; Hansen, '98)
 - Apply iterative method to $AL^{-1}Lx = b$.
 - In this case, we minimize $\|Lx\|_2$.
Preconditioning for Regularization

Basic idea:

- Find a matrix L to enforce smoothness constraint

$$\min ||Lx||_2$$

- Typically L approximates a derivative operator.
Typical approach for $Ax = b$

- Find matrix P so that $P^{-1}A \approx I$.

- "Ideal" choice: $P = A$

 In this case, converge in one iteration to $x = A^{-1}b$
Typical approach for $Ax = b$

- Find matrix P so that $P^{-1}A \approx I$.

- "Ideal" choice: $P = A$

 In this case, converge in one iteration to $x = A^{-1}b$

For ill-conditioned, noisy problems

- Inverse solution is corrupted with noise
Preconditioning for Speed

Typical approach for $Ax = b$

- Find matrix P so that $P^{-1}A \approx I$.

- "Ideal" choice: $P = A$
 In this case, converge in one iteration to $x = A^{-1}b$

For ill-conditioned, noisy problems

- Inverse solution is corrupted with noise

- "Ideal" regularized preconditioner: If $A = U\Sigma V^T$
 (Hanke, N., Plemmons, ’93)

 $$P = U\Sigma_k V^T = U \text{diag}(\sigma_1, \ldots, \sigma_k, 1, \ldots, 1)V^T$$
Notice that the preconditioned system is:

\[P^{-1}A = (U\Sigma_k V^T)^{-1}(U\Sigma V^T) \]

\[= V\Sigma_k^{-1}\Sigma V^T \]

\[= V\Delta V^T \]

where \(\Delta = \text{diag}(1, \ldots, 1, \sigma_{k+1}, \ldots, \sigma_n) \)

That is,

- Large (good) singular values clustered at 1.
- Small (bad) singular values not clustered.
Remaining questions:

1. How to choose truncation index, k?

 Use regularization parameter choice methods, e.g., GCV, L-curve, Picard condition

2. We can’t compute SVD, so now what?

 Use SVD approximation.
Preconditioning for Speed

An SVD Approximation:

- Decompose A as: (Van Loan and Pitsianis, ’93)

$$A = C_1 \otimes D_1 + C_2 \otimes D_2 + \cdots + C_k \otimes D_k$$

where $C_1 \otimes D_1 = \text{argmin} \|A - C \otimes D\|_F$.
An SVD Approximation:

- Decompose A as: (Van Loan and Pitsianis, ’93)
 \[A = C_1 \otimes D_1 + C_2 \otimes D_2 + \cdots + C_k \otimes D_k \]
 where \(C_1 \otimes D_1 = \arg\min ||A - C \otimes D||_F \).

- Choose a “structured” (or sparse) U and V.

An SVD Approximation:

- Decompose A as: (Van Loan and Pitsianis, ’93)
 \[A = C_1 \otimes D_1 + C_2 \otimes D_2 + \cdots + C_k \otimes D_k \]
 where \[C_1 \otimes D_1 = \operatorname{argmin}_{C} \|A - C \otimes D\|_F. \]

- Choose a “structured” (or sparse) U and V.

- Let $\Sigma = \operatorname{argmin}_{\Sigma} \|A - U\Sigma V^T\|_F.$
An SVD Approximation:

- Decompose A as: (Van Loan and Pitsianis, ’93)
 \[A = C_1 \otimes D_1 + C_2 \otimes D_2 + \cdots + C_k \otimes D_k \]
 where $C_1 \otimes D_1 = \arg\min \|A - C \otimes D\|_F$.

- Choose a "structured" (or sparse) U and V.

- Let $\Sigma = \arg\min \|A - U\Sigma V^T\|_F$.

 That is,
 \[\Sigma = \text{diag}(U^TAV) \]
Preconditioning for Speed

An SVD Approximation:

- Decompose A as: (Van Loan and Pitsianis, ’93)
 $$A = C_1 \otimes D_1 + C_2 \otimes D_2 + \cdots + C_k \otimes D_k$$
 where $C_1 \otimes D_1 = \arg\min ||A - C \otimes D||_F$.

- Choose a “structured” (or sparse) U and V.

- Let $\Sigma = \arg\min ||A - U\Sigma V^T||_F$.

That is,

$$\Sigma = \text{diag} \left(U^T A V \right)$$

$$= \text{diag} \left(U^T \left(\sum_{i=1}^{k} C_i \otimes D_i \right) V \right)$$
Preconditioning for Speed

Choices for U and V depend on problem (application).

- Since

$$A = C_1 \otimes D_1 + C_2 \otimes D_2 + \cdots + C_k \otimes D_k$$

and

$$C_1 \otimes D_1 = \text{argmin} \|A - C \otimes D\|_F$$

we might use singular vectors of $C_1 \otimes D_1$.
Choices for U and V depend on problem (application).

- Since

\[A = C_1 \otimes D_1 + C_2 \otimes D_2 + \cdots + C_k \otimes D_k \]

and

\[C_1 \otimes D_1 = \arg\min ||A - C \otimes D||_F \]

we might use singular vectors of $C_1 \otimes D_1$.

- For image restoration, we also use

 Fourier Transforms (FFTs)

 Discrete Cosine Transforms (DCTs)
Example: Image Restoration

1. Matrix Structure

2. Efficiently computing SVD approximation
Matrix Structure in Image Restoration

First, how do we get the matrix, A?
First, how do we get the matrix, A?

- Using linear algebra notation, the i-th column of A can be written as:

$$Ae_i = \begin{bmatrix} a_1 & \cdots & a_i & \cdots & a_n \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = a_i$$
Matrix Structure in Image Restoration

First, how do we get the matrix, A?

- Using linear algebra notation, the i-th column of A can be written as:

$$Ae_i = \begin{bmatrix} a_1 & \cdots & a_i & \cdots & a_n \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = a_i$$

- In an imaging system,

$$e_i = \text{point source}$$
$$Ae_i = \text{point spread function (PSF)}$$
Matrix Structure in Image Restoration

point source

PSF
Matrix Structure in Image Restoration

Spatially invariant PSF implies:

\[e_i \quad e_j \quad e_k \]

\[Ae_i \quad Ae_j \quad Ae_k \]
That is, spatially invariant implies

- Each column of A is identical, modulo shift.
- One point PSF is enough to fully describe A.
- A has Toeplitz structure.
Matrix Structure in Image Restoration

\[
e_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \text{blur} \rightarrow \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \rightarrow Ae_5 = \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \\ p_{21} \\ p_{22} \\ p_{23} \\ p_{31} \\ p_{32} \\ p_{33} \end{bmatrix}
\]

\[
A = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}
\]
Matrix Structure in Image Restoration

\[e_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \text{blur} \rightarrow \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \rightarrow A e_5 = \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \\ p_{21} \\ p_{22} \\ p_{23} \\ p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \]
Matrix Structure in Image Restoration

\[e_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \text{blur} \rightarrow \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} \rightarrow A e_5 = \begin{bmatrix} p_{11} \\ p_{12} \\ p_{13} \\ p_{21} \\ p_{22} \\ p_{23} \\ p_{31} \\ p_{32} \\ p_{33} \end{bmatrix} \]

\[A = \begin{bmatrix} p_{22} & p_{21} & p_{22} & p_{12} & p_{11} \\ p_{23} & p_{22} & p_{21} & p_{13} & p_{12} \\ p_{23} & p_{22} & p_{21} & p_{13} & p_{12} \\ p_{32} & p_{31} & p_{32} & p_{22} & p_{12} \\ p_{33} & p_{32} & p_{31} & p_{23} & p_{12} \\ p_{33} & p_{32} & p_{31} & p_{23} & p_{12} \\ p_{32} & p_{31} & p_{32} & p_{22} & p_{12} \\ p_{33} & p_{32} & p_{31} & p_{23} & p_{12} \end{bmatrix} \]
Matrix Structure in Image Restoration

Matrix Summary

<table>
<thead>
<tr>
<th>Boundary Condition</th>
<th>Matrix Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>BTTB</td>
</tr>
<tr>
<td>periodic</td>
<td>BCCB</td>
</tr>
<tr>
<td>reflexive</td>
<td>BTTB+BTCB+BHTB+BHHB</td>
</tr>
</tbody>
</table>

B = block
T = Toeplitz
C = circulant
H = Hankel
Matrix Summary

<table>
<thead>
<tr>
<th>Boundary Condition</th>
<th>Matrix Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>BTTB</td>
</tr>
<tr>
<td>periodic</td>
<td>BCCB (use FFT)</td>
</tr>
<tr>
<td>reflexive</td>
<td>BTTB + BTHB + BHTB + BHHB (use DCT)</td>
</tr>
</tbody>
</table>

Abbreviations:

- \(B \) = block
- \(T \) = Toeplitz
- \(C \) = circulant
- \(H \) = Hankel
Matrix Structure in Image Restoration

For a separable PSF, we get:

\[
\begin{bmatrix}
p_{11} & p_{12} & p_{13}
p_{21} & p_{22} & p_{23}
p_{31} & p_{32} & p_{33}
\end{bmatrix} = \mathbf{c} \mathbf{d}^T =
\begin{bmatrix}
c_1 d_1 & c_1 d_2 & c_1 d_3
c_2 d_1 & c_2 d_2 & c_2 d_3
c_3 d_1 & c_3 d_2 & c_3 d_3
\end{bmatrix} \rightarrow A e_5 =
\begin{bmatrix}
c_1
\begin{pmatrix}
d_1
d_2
d_3
\end{pmatrix}
c_2
\begin{pmatrix}
d_1
d_2
d_3
\end{pmatrix}
c_3
\begin{pmatrix}
d_1
d_2
d_3
\end{pmatrix}
\end{bmatrix}
\]
For a separable PSF, we get:

\[
\begin{bmatrix}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{bmatrix} = \mathbf{cd}^T = \begin{bmatrix}
c_1 d_1 & c_1 d_2 & c_1 d_3 \\
c_2 d_1 & c_2 d_2 & c_2 d_3 \\
c_3 d_1 & c_3 d_2 & c_3 d_3
\end{bmatrix} \rightarrow \mathbf{A} e_5 = \begin{bmatrix}
c_1 & \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} \\
c_2 & \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} \\
c_3 & \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}
\end{bmatrix}
\]
For a separable PSF, we get:

\[
\begin{bmatrix}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{bmatrix} = cd^T =
\begin{bmatrix}
c_1d_1 & c_1d_2 & c_1d_3 \\
c_2d_1 & c_2d_2 & c_2d_3 \\
c_3d_1 & c_3d_2 & c_3d_3
\end{bmatrix} \rightarrow Ae_5 =
\begin{bmatrix}
c_1 \\
c_2 \\
c_3
\end{bmatrix}
\begin{pmatrix}
d_1 \\
d_2 \\
d_3
\end{pmatrix}
\]
Matrix Structure in Image Restoration

For a separable PSF, we get:

\[
\begin{bmatrix}
 p_{11} & p_{12} & p_{13} \\
 p_{21} & p_{22} & p_{23} \\
 p_{31} & p_{32} & p_{33}
\end{bmatrix} = \mathbf{c}\mathbf{d}^T = \begin{bmatrix}
 c_1d_1 & c_1d_2 & c_1d_3 \\
 c_2d_1 & c_2d_2 & c_2d_3 \\
 c_3d_1 & c_3d_2 & c_3d_3
\end{bmatrix} \rightarrow \mathbf{Ae}_5 = \begin{bmatrix}
 c_1 \begin{pmatrix}
 d_1 \\
 d_2 \\
 d_3
 \end{pmatrix} \\
 c_2 \begin{pmatrix}
 d_1 \\
 d_2 \\
 d_3
 \end{pmatrix} \\
 c_3 \begin{pmatrix}
 d_1 \\
 d_2 \\
 d_3
 \end{pmatrix}
\end{bmatrix}
\]

\[
\begin{bmatrix}
 c_2 \begin{pmatrix}
 d_2 & d_1 & d_3 \\
 d_3 & d_2 & d_1 \\
 d_1 & d_3 & d_2
 \end{pmatrix} \\
 c_3 \begin{pmatrix}
 d_2 & d_1 & d_3 \\
 d_3 & d_2 & d_1 \\
 d_1 & d_3 & d_2
 \end{pmatrix}
\end{bmatrix} \begin{bmatrix}
 c_1 \begin{pmatrix}
 d_2 & d_1 & d_3 \\
 d_3 & d_2 & d_1 \\
 d_1 & d_3 & d_2
 \end{pmatrix} \\
 c_2 \begin{pmatrix}
 d_2 & d_1 & d_3 \\
 d_3 & d_2 & d_1 \\
 d_1 & d_3 & d_2
 \end{pmatrix} \\
 c_3 \begin{pmatrix}
 d_2 & d_1 & d_3 \\
 d_3 & d_2 & d_1 \\
 d_1 & d_3 & d_2
 \end{pmatrix}
\end{bmatrix} = \mathbf{C} \otimes \mathbf{D}
\]
If the PSF is not separable, we can still compute:

\[P = \sum_{i=1}^{r} c_i d_i^T \]

(sum of rank-1 matrices)

and therefore, get

\[A = \sum_{i=1}^{r} C_i \otimes D_i \]

(sum of Kron. products)

In fact, we can get “optimal” decompositions.

(Kamm, N, ’00; N., Ng, Perrone, 03)
SVD Approximation for Image Restoration

Use $A \approx U \Sigma V^T$, where

- If $F \left(\sum C_i \otimes D_i \right) F^*$ is best,

 $$U = V = F^*, \quad \Sigma = \text{diag} \left(F \left(\sum C_i \otimes D_i \right) F^* \right)$$

- If $C \left(\sum C_i \otimes D_i \right) C^T$ is best,

 $$U = V = C^T, \quad \Sigma = \text{diag} \left(C \left(\sum C_i \otimes D_i \right) C^T \right)$$

- If $(U_c \otimes U_d)^T \left(\sum C_i \otimes D_i \right) (V_c \otimes V_d)$ is best,

 $$U = U_c \otimes U_d, \quad V = V_c \otimes V_d,$$

 $$\Sigma = \text{diag} \left((U_c \otimes U_d)^T \left(\sum C_i \otimes D_i \right) (V_c \otimes V_d) \right)$$

Example →
• Preconditioning ill-posed problems is difficult, but possible.

• Can build approximate SVD from Kronecker product approximations.

• Can implement efficiently for image restoration.

• Matlab software: RestoreTools (Lee, N., Perrone, ’02)

 Object oriented approach for image restoration.
 http://www.mathcs.emory.edu/~nagy/RestoreTools/

 Related software for ill-posed problems
 (Hansen, Jacobsen)
 http://www.imm.dtu.dk/~pch/Regutools/