1. For each of the following, state the order of the ODE and whether it is linear or nonlinear.

(a) $y'/y = x^2 + x$
(b) $\sin(y') = 5y$
(c) $y'' = 3x^2$
(d) $y''' = y^3$
(e) $y'' + xy = \cos(y'')$
(f) $(1 + x^2)y' = (1 + y)^2$
(g) $y' + y + y^2 = x + e^x$
(h) $x^2y'' + x^{1/2}(y')^3 + y = e^x$

2. Solve the ODE initial value problem:

$$\frac{dy}{dx} = x + 1, \quad y(1) = 2$$

3. For each of the following, state the order of the PDE and whether it is linear or nonlinear.

(a) $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = (1 + t) \sin(x)$
(b) $\frac{\partial w}{\partial t} + w \frac{\partial w}{\partial x} = 0$
(c) $\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(2u \frac{\partial u}{\partial x} \right) = 0$
(d) $\frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(2x \frac{\partial u}{\partial x} \right) = 0$

4. (a) Determine if $u(x, t) = t \sin(x)$ is a solution of problem 3(a).
 (b) Determine if $w(x, t) = t(1 - x)$ is a solution of problem 3(b).

5. Consider the PDE:

$$4 \frac{\partial u}{\partial x} + 3 \frac{\partial u}{\partial y} + u = 0$$

Show that all of the following functions are solutions of this PDE.

(a) $e^{-x^4}(9x^2 - 24xy + 16y^2)$.
(b) $e^{-x^4}e^{3x^4 - 4y}$.
(c) $e^{-x^4}f(3x - 4y)$, where $f(z)$ is any differentiable function of z.
6. Determine if the following PDEs are parabolic, elliptic, or hyperbolic.

 (a) $u_{xx} + 2 \cos(x)u_{xy} - \sin^2(x)u_{yy} - \sin(x)u_y = 0$.
 (b) $u_{xx} + 4u_{xy} + 4u_{yy} = 0$.
 (c) $9u_{xx} + 12u_{xy} + 4u_{yy} + u_x = 0$.
 (d) $u_{xx} + 2u_{xy} + 3u_{yy} + 4u = 0$.
 (e) $u_{xx} - 8u_{xy} + 2u_{yy} + xu_x - yu_y = 0$.

7. Consider the PDE

 \[yu_{xx} + u_{yy} = 0 \]

 Determine for which points (x, y) is the PDE hyperbolic, which points (x, y) is the PDE parabolic, and which points (x, y) is the PDE elliptic.

8. Determine where (in the x, y-plane) the following PDE is hyperbolic, elliptic, and parabolic.

 \[x^2y \frac{\partial^2 u}{\partial x^2} + xy \frac{\partial^2 u}{\partial x \partial y} - y^2 \frac{\partial^2 u}{\partial y^2} = 0 \]