Algebraic groups over $K = \bar{K}$ (Lecture VI)
Derivations, Lie algebras of algebraic groups, Examples

Nivedita Bhaskhar

Emory

Spring 2016
What is a derivation

- Let F be a field and A, an F-algebra
- Let M be an A module
- An F-derivation is an F linear map $D : A \to M$ such that

$$D(ab) = aD(b) + bD(a).$$

- F-linearity forces that $D(f) = 0$ for each $f \in F$
- This is because on the one hand

$$D(f) = D(f.1) = fD(1) + D(f)$$

- But on the other hand $D(f.1) = fD(1)$.
- The set of F-derivations $Der_F(A, M)$ is an A module
- If $a \in A$ and D is an F-derivation, then $aD : A \to M$ sends $b \mapsto aD(b)$.
Universal derivation

- Let A and F be as before
- There exists an A-module $\Omega_{A/F}$ and a derivation $d : A \to \Omega_{A/F}$ such that for every A-module M

$$\text{Hom}_{A-mod} (\Omega_{A/F}, M) \to \text{Der}_F (A, M)$$

\[f \leftrightarrow f \circ d \]

is a bijection.

- We suppress the F in the notation and simply call the module Ω_A
- $d : A \to \Omega_A$ is called the universal derivation
To say it with a picture

\[A \xrightarrow{d} \Omega_A \xrightarrow{D} M \]

\[\exists! f \]

Derivations | Lie algebras | Identifications | Lie brackets | Examples
When \(A \) is a field

- Let \(A/F \) be a field extension
- If \(A/F \) is a finite separable extension, then \(\Omega_{A/F} = 0 \)
- If \(A/F \) is a purely transcendental extension, then the dimension of \(\Omega_{A/F} \) is the transcendence degree of \(A/F \)
- If \(A/F \) contains a sub-extension \(L/F \) such that \(A/L \) is finite separable and \(L/F \) is purely transcendental, then the dimension of \(\Omega_{A/F} \) is the transcendence degree of \(A/F \)
Recipe for Ω_A

- Let $A = F [x_1, x_2, \ldots x_n] / I$ where I is an ideal.
- Let I be generated by polynomials $\{f_j\}_{j \in J}$.
- Let X be the free A module on the set of symbols $\{dx_1, dx_2, \ldots x_n\}$.

$$X = \bigoplus_{i=1}^{n} A dx_i$$

- Let T_j be the polynomial $\sum_{i=1}^{n} \frac{\partial f_j}{\partial x_i} dx_i$.
- Then Ω_A is the A-module

$$\Omega_A := X / (T_j)_{j \in J}$$
Examples

• If $X = \text{Spec } A$ is an affine variety, we call Ω_A sometimes as Ω_X
• Let $X = \mathbb{A}_k^n$ be the affine n-space
• Then $\Omega_X \cong \bigoplus A^n$
• Notice $\text{dim } X = \text{rank } \Omega_X$

• Let Y be the unit circle over a characteristic not 2 field k.
• So $Y = \text{Spec } k[x, y](x^2 + y^2 - 1) = \text{Spec } A$
• So $\Omega_Y = \frac{Adx \oplus Ady}{(2xdx + 2ydy)}$
• Exercise : Check that Ω_Y is in fact $\cong A$!
• Hint : $z = xdy - ydx$ generates Ω_Y as an A-module.
 Why is it torsion free?
• Notice $\text{dim } Y = \text{rank } \Omega_Y$
Dimension \equiv rank

- Back to $K = \overline{K}$.
- Look at a connected algebraic group G/K
- Note that by definition for us, the coordinate ring $K[G]$ is reduced
- Since G is connected, it is irreducible and $K[G]$ is a domain
- Let $K(G)$ denote the function field of G
- Then in fact $\dim G = \text{rank } \Omega_G$!
Proof: Dimension = rank

- Rank of $\Omega_{K[G]}$ is the $K(G)$-dimension of $\Omega_{K[G]} \otimes_{K[G]} k(G)$
- Set $S = K[G] \setminus \{0\}$.
- Then

$$\Omega_{K[G]} \otimes_{K[G]} k(G) = \Omega_{K[G]} \otimes_{K[G]} S^{-1}K[G]$$
$$= \Omega S^{-1}K[G]$$
$$= \Omega_{K(G)}$$

- Thus rank of $\Omega_{K[G]}$ is the $K(G)$-dimension of $\Omega_{K(G)}$
- But the latter is the transcendence degree of $K(G)/K$ which is just $\dim G$
Exercise caution when not reduced

- Revisit the example of the circle over char 2 fields
- So \(Y = \text{Spec } k[x, y](x^2 + y^2 - 1) = \text{Spec } A \)
- \(A \) is not reduced!

\[
\Omega_Y = \frac{Adx \oplus Ady}{(2xdx + 2ydy)} \cong A \oplus A
\]

- Thus rank of \(\Omega_Y \) is 2!
What is a Lie algebra

- Let \(k \) be a field
- Let \(\mathcal{L} \) be a (finite dimensional) vector space over \(k \)
- Let \([,] : \mathcal{L} \times \mathcal{L} \to k\) be a \(k \)-bilinear form such that

\[
\text{Alternating : } [x, x] = 0 \forall x \in \mathcal{L} \\
\text{Jacobi identity : } [x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0.
\]

- \(\mathcal{L} \) along with \([,]\) is called a lie algebra over \(k \).
- Since \([x + y, x + y] = 0\), we see \([x, y] = -[y, x]\).
An example

- Let A/K be a (finite dimensional) associative algebra over K
- Let $[a, b] = ab - ba$ for every $a, b \in A$
- This makes A into a Lie algebra
Let A/K be a (finite dimensional) associative algebra over k

Let $X = \text{End}_K(A, A)$ be a Lie algebra under $[x, y] = xy - yx$ for every $x, y \in X$

Let $\mathcal{D} = \text{Der}_K(A, A) \subseteq X$

For $d, e \in \mathcal{D}$, the Lie bracket $[d, e] \in \mathcal{D}$ (Verify!)

Thus \mathcal{D}, with the induced Lie bracket is a Lie algebra over K
We are given a linear algebraic group G/K where $K = \overline{K}$.

We would like to associate to it a Lie algebra \textit{functorially}.

Then $\mathcal{D} = \text{Der}_K(A, A)$ where $A = K[G]$ is a candidate.

But \mathcal{D} is not a finite dimensional K-vspace!

We will define the Lie algebra of G to be a fd K-subspace of \mathcal{D}.
\[D_1 := \text{Lie}(G) \]

The first interpretation

- Recall the dual representation of left translation

\[\lambda : G \times A \to A \]

\[g, f \mapsto [x \mapsto f(g^{-1}x)] \]

- We call \(\lambda_g : A \to A \) to be the one sending \(f \mapsto \lambda(g, f) \).
- \(d \in D \) is said to be left invariant if

\[d \circ \lambda_g = \lambda_g \circ d \quad \forall g \in G \]

- It is a Lie-sub algebra of \(D \) (Check!) ..
- .. which we will call \(D_1 := \text{Lie}(G) \)
- At this point it is not clear why \(\text{Lie}(G) \) is finite dimensional \(K \)-space
- But we will establish an isomorphism with a clearly fd space soon.
D_2, the point derivations

The second interpretation

• Since G is an algebraic group, it contains the identity e
• This is the map $e : \text{Spec } K \to G$
• Which corresponds to $e^* : K[G] \to K$ which sends $f \mapsto f(e)$
• Setting $A = K[G]$ again, e^* is just the counit $\epsilon : A \to K$
• Thus K is an A module via ϵ
• Look at $D_2 := \text{Der}_K(A, k)$ where K is an A-module via ϵ.
• This is a K-vector space.
• We will define the Lie bracket on it later.
\(\mathcal{D}_3 \), the tangent space

The third interpretation

- Since \(G \) is an algebraic group, it contains the identity \(e \)
- Let \(I \) be the maximal ideal defining \(e \) in \(A = K[G] \)
- Thus \(0 \to I \to A \xrightarrow{\epsilon} K \to 0 \) is exact.
- Then \(\mathcal{D}_3 := \text{Hom}_K \left(I/I^2, K \right) = (I/I^2)^* \)
- This is the tangent space definition!
- Thus \(\mathcal{D}_3 \) is a finite dimensional vector space over \(K \).
- Again we will define the Lie bracket on it later.
The ring $K[t]/(t^2) = K[\tau]$ is called the ring of dual numbers.

We have a k-map, $\gamma : K[\tau] \to K$ which sends $\tau \sim 0$

Thus we have an induced map $G(\gamma) : G(K[\tau]) \to G(k)$ which sends $A \xrightarrow{f} K[\tau]$ to $A \xrightarrow{f} K[\tau] \xrightarrow{\gamma} K$

Define \mathcal{D}_4 to be the kernel of $G(\gamma)$, namely

$$1 \to \mathcal{D}_4 \to G(K[\tau]) \xrightarrow{G(\gamma)} G(K) \to 1$$

Thus \mathcal{D}_4 is apriori just a subset of $G(K[\tau])$

We will define the vector space structure and a Lie bracket on it later.
\(\mathcal{D}_4 = \mathcal{D}_2 \)

- Let \(f \in D_4 \)
- Since first of all \(f \in G(K[\tau]) \), it is a \(K \)-alg map \(f : A \rightarrow K[\tau] \)
- Since \(K[\tau] = K \oplus K\tau \), let \(f = f_1 + \tau f_2 \) where \(f_i : A \rightarrow K \).
- Recall that \(G(\gamma) : G(K[\tau]) \rightarrow G(K) \) sends \(A \xrightarrow{f} K[\tau] \) to \(A \xrightarrow{f} K[\tau] \xrightarrow{\gamma} K \)
- So we have \(\gamma \circ f = \epsilon \)
- So \(f_1 = \epsilon \)
- Each implication above is really an iff statement
- So \(f \in \mathcal{D}_4 \) if and only if \(f = \epsilon + \tau f_2 \)
$\mathcal{D}_4 = \mathcal{D}_2$

- $f_2 : A \rightarrow K$ is in \mathcal{D}_2! Here’s a proof:
- Recall $f(ab) = f(a)f(b)$ as f is a K-algebra map. Also ϵ.
- Since $f = \epsilon + \tau f_2$, we have

$$\epsilon(ab) + \tau f_2(ab) = (\epsilon(a) + \tau f_2(a)) (\epsilon(b) + \tau f_2(b))$$

- Multiply this out and use $\tau^2 = 0$ and $\epsilon(ab) = \epsilon(a)\epsilon(b)$
- So we have $f_2(ab) = f_2(a)\epsilon(b) + \epsilon(a)f_2(b)$
- Hence $f_2 \in \mathcal{D}_2$
- And now by identifying $f \in \mathcal{D}_4$ with $f_2 \in \mathcal{D}_2$, we can see this is a set bijection.
Let $d \in D_2$

Recall the exact sequence $0 \to I \to A \xrightarrow{\epsilon} K \to 0$

We claim that $d(I^2) = 0$

This is because for $i, j \in I$, we have

$$d(ij) = \epsilon(j)d(i) + \epsilon(i)d(j) = 0$$

Thus $d|_I : I \to k$ factors through $\tilde{d} : I/I^2 \to K$

$\tilde{d} \in D_3$!
Conversely, let \(f \in \mathcal{D}_3 \)

- We will manufacture \(\hat{f} : A \rightarrow K \in \mathcal{D}_2 \)
- Note that \(0 \rightarrow I \rightarrow A \xrightarrow{\epsilon} K \rightarrow 0 \) splits as vector spaces
- Thus \(A = I \oplus K \)
- Define \(\hat{f}(i + \lambda) = f(i) \) for \(i \in I \) and \(\lambda \in K \).
- It is an easy check that \(\hat{f} \in \mathcal{D}_2 \)!

For \(i, j \in I \) and \(c, e \in K \), we have

\[
\hat{f}((i + c)(j + e)) = \hat{f}(ij + cj + ie + ce) \\
= f(ij) + f(cj) + f(ie) \\
= 0 + cf(j) + ef(i) \\
= \epsilon(c)f(j) + \epsilon(e)f(i) \\
= \epsilon(i + c)f(j) + \epsilon(j + e)f(i) \\
= \epsilon(i + c)\hat{f}(j + e) + \epsilon(j + e)\hat{f}(i + c)
\]
• Identification is best done using the Hopf algebras language
• We shall give the recipe to go from \mathcal{D}_1 to \mathcal{D}_2 sans explanation
• Let $D \in \mathcal{D}_1$. Thus $D : A \to A$
• Composing with the co-unit ϵ gives an element $\epsilon \circ D$ in \mathcal{D}_2.

$A \xrightarrow{D} A \xrightarrow{\epsilon} K$
We shall give the recipe to go from \mathcal{D}_2 to \mathcal{D}_1 sans explanation.

Let $d \in \mathcal{D}_2$. Thus $f : A \rightarrow K$.

Recall the co-multiplication map $\mu^* : A \rightarrow A \otimes_K A$.

Form the following composition \tilde{d}

$$A \xrightarrow{\mu^*} A \otimes A \xrightarrow{\text{id} \otimes d} A \otimes K \simeq A$$

$\tilde{d} \in \mathcal{D}_1$!
Dimension of $\text{Lie}(G)$

- Dimension of $\text{Lie}(G) =$ dimension of the tangent space at e
- In general, tangent space dimension \geq dimension of G
- For smooth points, there is an equality
- Thus dimension $\text{Lie}(G)$ as a vspace over K is just $\dim G$.
Remarks about \mathcal{D}_4

- Let $A \xrightarrow{f} K[\tau] \in \mathcal{D}_4 \subseteq G(K[\tau])$
- As before, $f = \epsilon + \tau f_2$
- View $\epsilon : A \rightarrow K$ as picking out the identity point of G
- View f_2 (which we can identity to be in \mathcal{D}_2 and hence in \mathcal{D}_3) as picking out a tangent vector at e_G!
• Define $[M, N] = MN - NM$ for $M, N \in \text{End}_K(A)$
• $\mathcal{D}_1 \subseteq \text{End}_K(A)$ becomes a Lie subalgebra under this Lie bracket.
• We will transport this Lie structure to \mathcal{D}_2, \mathcal{D}_3 and \mathcal{D}_4!
Let $d_1, d_2 \in D_2$

Then $[d_1, d_2]$ is given by the composition

$$A \xrightarrow{\mu^*} A \otimes A \xrightarrow{d_1 \otimes d_2 - d_2 \otimes d_1} K \otimes K \cong K$$
Vector space structure on \mathcal{D}_4

- For $f, g \in \mathcal{D}_4 \subseteq G(K[\tau])$, set $f + g := f \ast g$ where \ast is the group operation in $G(K[\tau])$
- It turns out that $f \ast g \in \mathcal{D}_4$
- And also \ast restricted to \mathcal{D}_4 is abelian though it might not be abelian on all of $G(K[\tau])$
- The K-scalar multiplication is a little more involved to define
- For $\lambda \in K$, look at the K-algebra map

$$\gamma_\lambda : K[\tau] \rightarrow K, \quad \tau \mapsto \lambda \tau$$

- This induces a group map $G(\gamma_\lambda) : G(K[\tau]) \rightarrow G(K[\tau])$.
- For $f \in \mathcal{D}_4$, set $\lambda f := G(\gamma_\lambda)(f)$.
Let $f = \epsilon + \tau d_1$ and $f' = \epsilon + \tau d_2$ be in \mathcal{D}_4.

Then we would like to define $[f, f']$.

Let $R = K[u, v]$ where $u^2 = v^2 = 0$.

Let $\gamma_u : K[\tau] \to R$ send $\tau \sim u$

Let $\gamma_v : K[\tau] \to R$ send $\tau \sim v$

Let $\gamma_{uv} : K[\tau] \to R$ send $\tau \sim uv$

Thus we have $G(\gamma_u) : G(K[\tau]) \to G(R)$ and similarly $G(\gamma_v), G(\gamma_{uv})$.

[[,] on \mathcal{D}_4]
Define $g_1 := G(\gamma_u)(f) = \epsilon + ud_1$

Define $g_2 := G(\gamma_v)(f) = \epsilon + vd_2$

Let $g = g_1 g_2 g_1^{-1} g_2^{-1} \in G(R)$

Look at $G(\gamma_{uv})^{-1}(g)$

It turns out to be in \mathcal{D}_4 and we set it to be $[f, f']$

More explicitly, $g = \epsilon + (uv)[d_1, d_2]$

And $[f, f'] = \epsilon + \tau[d_1, d_2] \in D_4$
Let $G = \mathbb{G}_a$. Thus $A = K[t]$

Since G is smooth and one dimensional, $\text{Lie}(G) \cong K$

We can also use the \mathcal{D}_2 interpretation to see this

Derivations $d : K[t] \to K$ are determined by $d(t) \in K$.

What is the Lie bracket on $\text{Lie}(G)$?

Let $d_1, d_2 \in \mathcal{D}_2$. Then $d = [d_1, d_2]$ is given by the composition

$$A \xrightarrow{\mu^*} A \otimes A \xrightarrow{d_1 \otimes d_2 - d_2 \otimes d_1} K \otimes K \cong K$$

But $\mu^*(t) = 1 \otimes t + t \otimes 1$

Then we get

$$d(t) = d_1(1)d_2(t) + d_1(t)d_2(1) - d_2(1)d_1(t) - d_2(t)d_1(1) = 0$$

This is because $d_i(1) = 0$

Thus $\text{Lie}(G) = K$ and $[a, b] = \forall a, b \in \text{Lie}(G)$
Let $G = \mathbb{G}_m$. Thus $A = K[t, t^{-1}]$

• As before, it is easy to see $\text{Lie}(G) \simeq K$.

• What is the Lie bracket on $\text{Lie}(G)$?

• Let $d_1, d_2 \in \mathcal{D}_2$. Then $d = [d_1, d_2]$ is given by the composition

$$A \xrightarrow{\mu^*} A \otimes A \xrightarrow{d_1 \otimes d_2 - d_2 \otimes d_1} K \otimes K \simeq K$$

• But $\mu^*(t) = t \otimes t^{-1}$

• Then we get $d(t) = d_1(t)d_2(t) - d_2(t)d_1(t) = 0$

• Thus $\text{Lie}(G) = K$ and $[a, b] = \forall a, b \in \text{Lie}(G)$