Continuity (sec 1.8)

We already defined continuity.

Cont at \(a \), graph doesn't break.

\[\lim_{x \to a} f(x) \] exists and \(\lim_{x \to a} f(x) = f(a) \)

Discont at \(a \), graph breaks/jumps.

Either:

1. \(\lim_{x \to a} f(x) \) doesn't exist
2. \(\lim_{x \to a} f(x) \) exists but \(\lim_{x \to a} f(x) \) is not equal to \(f(a) \)
Which of the following functions are discontinuous?

a) \(x^2 - x - 2 \)

b) \(\frac{x^2 - x - 2}{x - 2} \)

c) \[x \geq 3 \]

d) \(f(x) = \begin{cases} \frac{1}{x^2} & x \neq 0 \\ 1 & x = 0 \end{cases} \)

e) \(f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & x \neq 2 \\ 1 & x = 2 \end{cases} \)

\(f(x) \) is nice at all points except maybe at 2.

Let us check what

\[\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \]

polynomials are nice, continuous

\(f(2) \) is not even defined!

discontinuity

breaks at integers
discontinuity

\[\begin{array}{c}
\text{discontinuity} \\
\text{breaks at 0} \\
\text{at 1} \\
\end{array} \]
\[
\frac{x^2 - x - 2}{(x-2)} = \frac{(x-2)(x+1)}{(x-2)} = x+1
\]

\[
\lim_{x \to 2} x+1 = 3
\]

But \(f(2) = 1 \)

So limit at 2 \(\neq f(2) \), so not cont

What about \(f(x) = 1 - \sqrt{1-x^2} \) on \([-1,1]\)?

\[
\begin{array}{c|c|c}
-1 & 1 & \text{meas} \\
\hline
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{array}
\]

So \(1 - x^2 \geq 1 - 1 = 0 \)

So \(\sqrt{1-x^2} \) is ok for \([-1,1]\).
let us pick some a in $(-1, 1)$

$$\lim_{{x \to a}} f(x) = \lim_{{x \to a}} 1 - \sqrt{1 - x^2}$$

$$= \lim_{{x \to a}} 1 - \lim_{{x \to a}} \sqrt{1 - x^2}$$

$$= 1 - \sqrt{\lim_{{x \to a}} (1 - x^2)}$$

$$= 1 - \sqrt{1 - a^2}$$

$$= f(a)$$

for end points $\to 1$

we can only see what $\lim_{{x \to -1^+}} f(x)$ and $\lim_{{x \to -1^-}} f(x)$ are

So check these are function values.
Some useful facts

If \(f, g \) are continuous at \(a \), so are

1) \(f + g \)
2) \(f \cdot g \)
3) \(c f \), \(c \) is a constant
4) \(f \cdot g \) if \(g(a) \neq 0 \)

Why?

\(f, g \) cont at \(a \), Thus means

\[
\lim_{x \to a} f(x) = f(a)
\]

\[
\lim_{x \to a} g(x) = g(a)
\]

So

\[
\lim_{x \to a} f(x) + g(x) = f(a) + g(a)
\]

using laws of limits
So this shows [Justification for most of our plug in points or limits]

Any polynomial is cont. everywhere.

ex: \[ax^2 + 3(x) + 4 \]

\[= 2(x)(x) + 3(x) + 4 \]

And \(f(x) = x \) = identity function is continuous.

And \(f(x) = c \) constant function is cont.

Builder blocks for polynomials = \{ f(x) = x \} and \(f(x) = c \)

D) Rational function is continuous in its domain.

\(\left(\frac{\text{polynomial}}{\text{polynomial}} \right) \)

So \(f(x) = \frac{x^2 - 2x - 3}{x - 2} \) is cont at everywhere except 2

At 2, we need to find limits and see what \(f(2) \) is
\[
\sin x
\]

\[\cot x\]

\[\csc x\]

Also \(\cos x\)!

\[\tan x\]

\[\cot x\]

HW!
So trigonometric functions are continuous in their domains!

Also root functions are continuous in their domains.

Where are these functions not continuous?

\[\sqrt{x} + \frac{x+1}{x-1} + \frac{x+1}{x^2+1} = f(x) \]

Need to be defined, so find domain:

\[\sqrt{x} \leftarrow [0, \infty) \]

\[\frac{x+1}{x-1} \leftarrow \mathbb{R} \setminus \{1\} \]

\[\frac{x+1}{x^2+1} \leftarrow \mathbb{R} \]

All denominators never vanish.

Common points: \([0, \infty) \setminus \{1\} \)
and by our rule, the function is not in its domain.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x) = \frac{1}{x-1}$</td>
</tr>
<tr>
<td>Domain of $f = \mathbb{R} \setminus {1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$g(x) =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{cases} \frac{1}{x-1} & x \neq 1 \ 2 & x = 1 \end{cases}$</td>
</tr>
<tr>
<td>Domain of $g = \mathbb{R}$</td>
</tr>
</tbody>
</table>

Another example:

$$\frac{\sin x}{2 + \cos x} = f(x)$$

can everywhere! as

domain = \mathbb{R}
denominator never vanishes as $2 + \cos x \neq 0$

This is a trigonometric function

-1 $\leq \cos x \leq 1$
If \(f \) is continuous at \(b \) and
\[
\lim_{x \to a} g(x) = b,
\]
then
\[
\lim_{x \to a} f(g(x)) = f(b).
\]

For \(x \) close to \(a \),
\[
\begin{align*}
g(x) & \text{ close to } b \\
f(g(x)) & \text{ close to } f(b)
\end{align*}
\]
basically
example:

\[f(x) = e^x \quad \leftarrow \text{cont. everywhere so at } 4 \]

\[g(x) = \text{some function} \quad \lim_{x \to 3} g(x) = 4 \]

what is

\[\lim_{x \to 3} f(g(x)) = f\left(\lim_{x \to 3} g(x) \right) = f(4) = e^4 \]

here \(a = 3, \ b = 4 \)
If \(g \) is cont at \('a' \) and \(f \) is cont at \('g(a)' \), then \(f \circ g \) is cont at \(a \).

\[x \to a \]

\[g(x) \to g(a) \quad \text{[as \(g \) is cont at \('a' \)]} \]

\[f(g(x)) \to f(g(a)) \quad \text{[as \(f \) is cont at \(g(a)' \)]} \]

So

\[f \circ g \to f \circ g(a) \]

\(f \circ g \) is cont at \(a \).

(Ex) where \(\frac{1}{\sqrt{x^2 + 7} - 4} \) cont ?

Components:

\[f(x) = \frac{1}{x} \quad g(x) = x - 4 \quad h(x) = \sqrt{x} \]

\[k(x) = x^2 + 7 \]
So
\[F(x) = \frac{1}{\sqrt{x^2+7} - 4} \]

= \(f \circ g \circ h \circ k(x) \)

Each \(f, g, h, k \) cont on \(\text{its domain} \)

So \(F \) cont on \(\text{its domain} \)

\[F's \ domain \]
\[\sqrt{x^2+7} - 4 \neq 0 \]
\[\iff x^2 + 7 \neq 4^2 \]
\[\iff \sqrt{x^2+7} \neq 4 \]
\[\iff (\sqrt{x^2+7})^2
eq 4^2 \]
\[\iff x^2 + 7 \neq 16 \]
\[\iff x^2 \neq 9 \]
\[\iff x \neq \pm 3 \]

\[\Rightarrow \ \text{IR} \ \setminus \{3, -3\} \ \text{or} \ (-\infty, -3) \cup (-3, 3) \cup (3, \infty) \]