This test totals 18 points. Good luck!

1. (6 pts) Match the differential equations and the graphs of their solutions by drawing clear arrows.

\[y' = -x \]

\[y' = 0 \]

\[y' = y^2 + 1 \]
2. (12 pts) Answer the following questions based on the differential equation (DE) given below

\[y' = 2 - \sin x \quad \text{(DE)} \]

(a) (1 pt) Find the slope of the arrow at the point (0, 1000) in the direction field of the DE

\[y'(0, 1000) = 2 - \sin 0 = 2 \]

Slope: \(\frac{2}{1000} \)

(b) (2 pts) Can you find a point where the arrow in the direction field of the DE is horizontal. If yes, give the coordinates of the point. If not, explain.

No!

Arrow horizontal \(\Rightarrow \quad y' = 0 \)

\[\Rightarrow \quad 2 - \sin x = 0 \]

\[\Rightarrow \quad \sin x = 2 \]

Can never happen for any \(x \).

(c) (2 pts) Give the coordinates of a point \((x_0, y_0)\) where the arrow is the steepest possible in the direction field of the DE.

\[-\sin x \text{ is max when } \sin x = \min, \quad \text{use } -1 \]

\[\Rightarrow \quad 2 - (-1) = 3 \]

\[(x_0, y_0) = \left(-\frac{\pi}{2}, 0\right) \]

(d) (2 pts) If \(y = f(x) \) is a solution to the DE, circle ONE of the four options below which best describes \(f(x) \).

i. \(f \) is decreasing on \((-\infty, \infty)\)

\[\text{ii. } f \text{ is increasing on } (-\infty, \infty) \quad y' > 0 \]

iii. \(f \) is a constant function

iv. \(f \) is decreasing on \((-\infty, 0)\) and increasing on \((0, \infty)\)
(e) (2 pts) Use Euler's method using a step size $h = 1$ to find an approximate value of $y(1)$ for the initial value problem

$$y' = 2 - \sin x, \quad y(0) = 0$$

$$y' = f(x, y) = 2 - \sin x$$

$$x_0 = 0 \quad y_0 = 0 \quad h = 1$$

$$y_1 = y_0 + (h) \cdot f(x_0, y_0)$$

$$= 0 + (1) \cdot (2 - \sin 0)$$

$$= 0 + 2$$

$$= 2$$

So

$$x_1 = x_0 + h = 0 + 1 = 1$$

$$y_1 = 2$$

$y(1) \approx 2$
(f) (3 pts) Finally, solve the initial value problem
\[y' = 2 - \sin x, \quad y(0) = 0 \]

\[y = \int (2 - \sin x) \, dx \]

\[= 2x + \cos x + C \]

\[y(0) = 0 \]

\[\Rightarrow x = 0 \quad \text{gives} \quad y = 0 \]

\[\therefore 0 = \cos 0 + C \]

\[0 = 1 + C \]

\[\therefore C = -1 \]

\[y(x) = 2x + \cos x - 1 \]