Exam III - Practice Problems

N

11 April 2015

Geometric series and Test for divergence (11.2)

1. Find whether the following series are convergent. If yes, to what do they converge to. If not, justify.

(a) \[\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}} \]

(b) \[\sum_{k=1}^{\infty} \frac{k^2}{k^2 - 1} \]

2. Convert 1.53424242424242424242..... into a rational number

Integral Test and estimates (11.3)

1. State the Integral test.

2. Find whether the following series are convergent. Justify.

(a) \[\sum_{n=1}^{\infty} \frac{\ln n}{n} \]

(b) \[\sum_{n=1}^{\infty} ne^{-n} \]
3. State the remainder estimate for the Integral test

4. Find an upper bound for R_{10} for $\sum_{n=1}^{\infty} \frac{1}{n^3}$

Comparison tests (11.4)

1. State the Comparison and the Limit comparison tests.

2. Find whether the following series are convergent. Justify.

 (a) $\sum_{n=1}^{\infty} \frac{1 + \sin n}{10^n}$

 (b) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n + 1}$

Alternating test (11.5)

1. State the Alternating test.

2. Find whether the following series are convergent. Justify.

 (a) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{10^n} \right)$

 (b) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{3n - 1}{2n + 1} \right)$

3. State the remainder estimate for the Alternating test

4. Find an upper bound for R_5 for $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$
Absolute convergence, ratio and root tests (11.6)

1. State the Ratio and Root tests

2. Find whether the following series are absolutely convergent. Justify.

 (a) \[\sum_{n=1}^{\infty} \left(\frac{\cos n}{n^2} \right) \]

 (b) \[\sum_{n=1}^{\infty} \left(\frac{n^n}{n!} \right) \]

 (c) \[\sum_{n=1}^{\infty} \left(\frac{(2n + 3)^n}{(3n + 2)^n} \right) \]

Power series (11.8-11.9)

 (a) Find the power series representation around 0 for \(f(x) = \frac{1}{x+10} \).

 Find its radius of convergence

 (b) Find the power series for \(\int f(x) = \int \frac{1}{x+10} \)

 (c) Find the power series for \(f'(x) = \frac{d}{dx} \left(\frac{1}{x+10} \right) \)

Taylor series (11.10)

 (a) Find the Maclaurin series for \(f(x) = \ln(1+x) \). Find its radius of convergence

 (b) Find the Taylor series for \(f(x) = \cos x \) around \(x = \pi \).
<table>
<thead>
<tr>
<th>Series</th>
<th>Test for div</th>
<th>DIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum \frac{n-1}{2n-1}$</td>
<td>Test for div</td>
<td>DIV</td>
</tr>
<tr>
<td>$\sum \frac{\sqrt{n^3+1}}{3n^2+4n^2+2}$</td>
<td>Limit</td>
<td>Conv</td>
</tr>
<tr>
<td>$\sum ne^{-n^2}$</td>
<td>Integral test</td>
<td>Conv</td>
</tr>
<tr>
<td>$\sum (-1)^n \frac{n^3}{n^4+1}$</td>
<td>Alternating series test</td>
<td>Conv</td>
</tr>
<tr>
<td>$\sum 2^k/k!$</td>
<td>Ratio test</td>
<td>Conv</td>
</tr>
<tr>
<td>$\sum \frac{1}{2+3^n}$</td>
<td>Comparison test</td>
<td>Conv</td>
</tr>
</tbody>
</table>