Final Exam - Practice Problems

N
25 April 2015

Precal/Calc review and (1.5 -1.6)

1. \(\lim_{x \to \infty} \frac{5x^2 - 4x + 7}{3x^2 - 6} = \)

2. Find the tangent to \(f(x) = \sin 3x + \cos 2x\) at the point \((\pi/6, 1)\).

3. Factorize \(3x^2 - 7x - 6\)

4. Find the derivative of \([\cos(\ln x) - x \sin x + \frac{x+1}{x-1}]\)

5. Find the integral of \([\frac{x^2 + \sec^2 x}{x^3 + 3\tan x} + 2x^7]\)

6. Find the integral of \(\tan x\)

Integration by parts (7.1)

1. \(\int_1^e (x^2 \ln(\sqrt{x})) \, dx\)

2. \(\int (t \sec^2(3t)) \, dt\)

Trigonometric identities and integrals (7.2)

- Read Strategies in Pages 473, 474.
- Formula sheet given before in class and Formula box in Page 476
1. \(\int (\sin 8x \cos 5x) \, dx \)
2. \(\int (\sin^3 x \cos^4 x) \, dx \)
3. \(\int (\tan^2 x + \tan^4 x) \, dx \)

Partial fractions (7.4)

Reading Revision

- Revise polynomial division
- Case I, Example 2 in Pg 486
- Case II, Example 4 in Pg 488

1. \(\int_4^5 \left(\frac{x^3 - 4x - 10}{x^2 - x - 6} \right) \, dx \)
2. \(\int \left(\frac{x^2 - 5x + 16}{(2x+1)(x-2)^2} \right) \, dx \)

Approximate integration (7.7)

Reading Revision

- Midpoint rule formula in Page 507
- Error bound for midpoint rule \((E_M)\) on Page 510

Approximate using midpoint formula and find the error bound using two rectangles for

\[
\int_0^\pi x \cos x
\]
Improper integrals (7.8)

Reading Revision

• Type I, Example 2 on Page 521
• Type II, Example 7 on Page 524

Evaluate the following improper integrals [use the language of limits]

1. $\int_0^\infty xe^{-4x} \, dx$
2. $\int_0^1 \ln 2x \, dx$

Arc length and surface area (8.1 and 8.2)

Reading Revision

• Arc length formulae in Pages 539 and 540
• Surface area formulae in Page 547

Set up (but do not evaluate) the following integrals for calculating

1. The arc length of $y = \frac{x^3}{3} + \frac{1}{4x}$ for $1 \leq x \leq 2$
2. The surface area obtained by rotating the curve $y = e^{-x^2}$, $-1 \leq x \leq 1$ about the x-axis.

9.1 - 9.5

Separable and linear differential equations

1. $\frac{dy}{dx} = \frac{\ln x}{xy}$ where $y(1) = 2$
2. $\frac{dy}{dt} = \frac{2t}{ey + t^2}$ where $y(0) = 0$
3. $xy' - y = x \ln x$ where $y(1) = 2$ and $x > 0$
Orthogonal trajectories and mixing problems

1. Find the orthogonal trajectories for the family of curves $y = ke^x$ where k is an arbitrary constant.

2. A tank contains 100 litres of pure water. Brine that contains 0.1 kg of salt per liter of water enters the tank at a rate of 10 litre per min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is there in the tank after 6 minutes?

Growth models, direction fields etc

1. Write down the differential equation and general solution for the exponential and logistic growth models.

2. Suppose that a population develops according to the logistic equation

$$\frac{dP}{dt} = 0.1P \left(1 - \frac{P}{2000}\right)$$

where t is measured in weeks.

(a) What is the carrying capacity?

(b) What is the value of k?

(c) What is the slope of the arrow at $(0, 2000)$ in the direction field?

(d) What is the slope of the arrow at $(0, 100)$ in the direction field?

(e) If the initial population is 100, what happens to the population in the long run? (i.e., find $\lim_{t\to\infty} P(t)$). Also find the population in 20 weeks.

Polar coordinates and areas (10.3 and 10.4)

1. Find the polar coordinates of a point whose x, y coordinates are given by $(2, -2)$.

2. Find the x, y coordinates of a point whose polar coordinates are given by $(2, \frac{\pi}{4})$.

3. Find the slope of the tangent line to the polar curve given by $r = 2\sin\theta$ at $\theta = \pi/6$.
4. Find the area of the region bounded by the curve \(r = e^{-\theta/4} \) where \(\pi/2 \leq \theta \leq \pi \)

Sequences (11.1)

Find the limits of the following sequences. [Sometimes they might not exist!]

1. \(\left\{ \frac{3n}{1+6n} \right\}_{n=1}^{\infty} \)

2. \(\left\{ 1 + \frac{10^n}{9^n} \right\}_{n=1}^{\infty} \)

3. \(\left\{ \sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \ldots \right\} \)

Geometric series and Test for divergence (11.2)

1. Find whether the following series are convergent. If yes, to what do they converge to. If not, justify.

 (a) \(\sum_{n=1}^{\infty} \frac{12}{(-5)^n} \)

 (b) \(\sum_{k=1}^{\infty} \frac{3n}{1+6n} \)

2. Convert 2.516516516516... into a rational number

Integral Test and estimates (11.3)

1. State the Integral test.

2. Find whether the following series are convergent. Justify.
3. State the remainder estimate for the Integral test
4. Find an upper bound for R_{10} for $\sum_{n=1}^{\infty} \frac{1}{n^3}$

Comparison tests (11.4)

1. State the Comparison and the Limit comparison tests.
2. Find whether the following series are convergent. Justify.

 (a) $\sum_{n=1}^{\infty} \frac{1 + \sin n}{10^n}$

 (b) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n + 1}$

Alternating test (11.5)

1. State the Alternating test.
2. Find whether the following series are convergent. Justify.

 (a) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{n}{10^n} \right)$

 (b) $\sum_{n=1}^{\infty} (-1)^n \left(\frac{3n - 1}{2n + 1} \right)$
3. State the remainder estimate for the Alternating test

4. Find an upper bound for R_8 for $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$

Absolute convergence, ratio and root tests (11.6)

1. State the Ratio and Root tests

2. Find whether the following series are absolutely convergent. Justify.

 (a) $\sum_{n=1}^{\infty} \left(\frac{\cos n}{n^2}\right)$

 (b) $\sum_{n=1}^{\infty} \left(\frac{n^n}{n!}\right)$

 (c) $\sum_{n=1}^{\infty} \left(\frac{(2n + 3)^n}{(3n + 2)^n}\right)$

Power series (11.8-11.9)

(a) Find the power series representation around 0 for $f(x) = \frac{5}{1 - 4x^2}$.
 Find its radius of convergence

(b) Find the power series for $\int f(x) = \int \left(\frac{5}{1 - 4x^2}\right)$

(c) Find the power series representation around 0 for $g(x) = \frac{1}{1 + x^2}$.
 (Hint: Think of a function whose derivative is g)

Taylor series (11.10)

(a) Find the Maclaurin series for $f(x) = \sqrt{1 + x}$.

(b) Find the Maclaurin series for $f(x) = e^{-2x}$. Find its interval of convergence

(c) Find the Taylor series for $f(x) = \ln x$ around $a = 2$.
Applications (11.11)

1. Find the Taylor polynomial $T_4(x)$ for $f(x) = \sin x$ around $a = \pi/6$

2. Find the error for $0 \leq x \leq \pi/3$ using Taylor’s inequality