WORKSHEET

1. An antiderivative of \(\sin x + \cos x \) is
 a) \(\cos x - \sin x \) b) \(\sin x - \cos x \) c) \(\sin x + \cos x \) d) None of them

2. Given \(\int e^x \cdot x \, dx = e^x(x-1) \) [for getting the constant]
 find \(\int e^x \cdot x^2 \, dx \).

 Challenge: can you think of a formula for \(\int e^x \cdot x^n \, dx \)

3. \(\int_0^3 f(x) \, dx = 0 \) • Which of the following CANNOT happen?
 [mark all options which seem right to you]
 a) \(f \) is increasing function on \([2,3]\)
 b) \(f \) is decreasing function on \([2,3]\)
 c) absolute min value of \(f \) on \([2,3]\) is \(0.002\)
 d) None of these

4. \(\int_2^3 \ln(e^x) \, dx \)

 a) \(\frac{5}{2} \) b) \(2e^3 - e^2 \) c) \(1 \) d) None of these

5. \(\int_0^\infty \sin x \, dx \)

 a) Does not exist b) 0 c) 1 d) None of these
6. Find
 \(a \int (\sin x + x \cos x) \, dx \)

 \(b \int \left(\frac{\tan x}{x} + x \sec^2 x \right) \, dx \)

 \(c \int (e^x + xe^x) \, dx \)

 Can you see a pattern?

 HINT: \(\int f \, dx = (f')\frac{x}{2} - \int x f' \)

7. Find
 \(a \int e^x (\sin x + \cos x) \, dx \)

 \(b \int e^x (\tan x + \sec^2 x) \, dx \)

 \(c \int e^x (x + 1) \, dx \)

 Can you see a pattern.

 HINT: what is \(\int e^x f \, dx \)?

8. \[f \]

 \[g(x) = 5 \text{ sq. units.} \]

 \[\int_0^6 g(x) \, dx = 3 \]

 Find \(\int_0^6 f(x) \, dx \).