Differential Equations

Example 1: \(y'' + 2xy^2 y' + 7xy = 0 \)

Double derivative
Second order

Example 2: \(y' = 7x + y \)

First derivative
First order

Solving

\[y' = f(x) \]

Theory

\[y' = f(x) \]
\[y = \int f(x) \, dx \]
\[= q(x) + c \]

Anti-derivative

Example

\[y' = 2x^2 \]
\[y = \int 2x^2 \, dx \]
\[= \frac{2x^3}{3} + c \]

"General solution"

Initial Value Problem

Solving \(y' = f(x) \)
\[y(0) = ? \]

Example

Give \(y' = 2x^2 \), \(y(0) = 7 \)
\[\Rightarrow y(0) = c = 7 \]

Particular solution
\[y = 2x^2 + 7 \]
Direction (slope) fields

How to visualize?

\[y' = \frac{x^2}{4} + c \]

\[y = \frac{x^2}{4} + c \]

→ At pt (x, y), draw arrows with slope \(y' \)

→ (10) here

(1, 0) → arrow with slope \(\frac{1}{2} \)

(1, y) → “

(-1, 1) → arrow with slope \(-\frac{1}{2} \)

(0, y) → arrow with slope 0

→ Solutions go differential due "flow" along there!

→ Notice no \(x^n \) as different particular solutions (this is a general fact!)

(So initial condition → unique solution!)

for \(y' = f(x, y) \) in a nbhd

Theorem

Consider \(y' = f(x, y) \) \(\{ \) IVP, first order

\(y(x_0) = y_0 \)

Assume \(f, \frac{df}{dy} \) are cont. near \((x_0, y_0) \)

→ IVP has! solution on some interval including \(x_0 \)

⇒ So different \(f \), \(y' = f(x, y) \) dont \(x^n \)!
\[\text{acc} \rightarrow \text{vel} \rightarrow \text{position} \]
\[v(0) \quad s(0) \quad \text{given} \]

\[y'' = f(x) \quad \rightarrow \quad y' = \int f(x) \, dx \]
\[y'(0) = * \quad \rightarrow \quad y = \int y'(x) \, dx \]
\[y(0) = ** \quad \rightarrow \quad \text{solve for } y \]

Verifying whether \(y = f(x) \) is a solution for DE:

\[2x^2 + 7x + 1 = 0 \]

Is \(x = -1 \) a sol? What do you do?

Plug in, check:

\[2(1) + 7 + 1 \neq 0 \]

so \(-1\) not a sol

\[y'' - 4y' + 3y = 0 \]

Similarity:

\[y'' - 4y' + 3y = 0 \]

Is \(y = 4e^{2x} \) a solution?

\[y'' = 4e^{2x} \]

\[y' = 4e^{2x} \]

\[4e^{2x} - 16e^{2x} + 12e^{2x} = 0 \]

\[\rightarrow \text{yes!} \]

\[y = 4e^{2x} \text{ is a solution.} \]

Hw: Is \(y = 4e^x + 5e^{3x} \) a solution?

\[\rightarrow \text{worked out in book} \]
36) \(y' = \frac{y}{2} \)

- slope field sketch
- guess sol from graph
- actually write down solution!

HW 8.1

5, 6, 9, 10, 15, 16, 19, 20, 22, 23,
25, 28, 33, 34, 35, 37, 44, 45,

sec 8.2

Linear first order diff eq

\[
\begin{align*}
y' + p(x) y &= q(x) \\
\text{first order} &\quad \text{linear}
\end{align*}
\]

ex: \(y' + (\mp x^2 + 3) y = 8x + \sin x \)

If \(q(x) = 0 \), \(y' + p(x)y = 0 \) \(\leftrightarrow \) Linear homogeneity

ex: \(y' = -7xy \)

\(\rightarrow \) \(y' + 7xy = 0 \)
Note: $y' + x^2 = e^x < \text{ NOT } \frac{\text{LFODE}}{\text{Linear first order diff eq}}$

y^2 term there!

Then:

\[y' + p(x)y = q(x) \] \text{ IVP}
\[y(x_0) = y_0 \] \text{ Linear first order diff eq}

→ Assume p, q cont on an interval I containing x_0

→ Then unique sol to this IVP defined for every pt in I exists.

So if p, q cont everywhere, then sol exists everywhere.

Finding intervals where solutions exist:

1. $y' = 7xy$
 \[y(0) = 2 \]
 \[p(x) = -7x \]
 \[q(x) = 0 \]
 \[\text{cont all of } \mathbb{R} \]
 \[(-\infty, \infty) \]

2. $y' - \frac{x}{x^2+1}y = \frac{e^x}{x^2+1}$
 \[y(0) = 4 \]
\[p(x) = -\frac{x}{x^2+1} \]
\[q(x) = \frac{e^x}{x^2+1} \]

so \((-\infty, 0)\)

3) \[x y' + y = x^3 \quad y(2) = -3 \]

\[\rightarrow y + \frac{y}{x} = x^2 \quad y(2) = -3 \]

\[p(x) = \frac{1}{x} \leftarrow (-\infty, 0) \quad (0, \infty) \]

\[q(x) = x^2 \leftarrow \text{cont everywhere} \]

Need to pick interval containing \(x_0 = 2\)
Solving these

Theory

1) Get it in the form
 \[y' + p(x) \cdot y = q(x) \]

2) Identify \(p(x) \) and \(q(x) \)

3) \(F(x) = \int p(x) \, dx \)

4) \(g(x) = \ln \mid \text{integrand} \mid \)
 \[g(x) = \ln \left| e^{\int p(x) \, dx} \right| \]
 \[= e^{\int p(x) \, dx} \]

5) **MAGIC!**

 - Find \(\int g(x) \cdot q(x) \, dx \)
 - Divide by \(g(x) \)

\[-\frac{1}{3} e^{-x^3} + c \]

\[e^{-x^3} \]

\[\frac{-1}{3} + C e^{x^3} \]

\[\text{Solution} \]

Example

1) \[y' = x^2 + 3x^2y \]
 \[y' - 3x^2y = x^2 \]

2) \[p(x) = -3x^2 \]
 \[q(x) = x^2 \]

3) \[F(x) = \int -3x^2 \, dx \]
 \[= -x^3 \]

4) \[g(x) = e^{-x^2} \]

\[\int e^{-x^3} \cdot x^2 \, dx = \]

\[u = -x^3 \]

\[du = -3x^2 \, dx \]

\[\Rightarrow -\frac{1}{3} \int e^u \, du \]

\[\Rightarrow -\frac{1}{3} e^{-x^3} \]

\[\Rightarrow -\frac{1}{3} e^{-x^3} + c \]

Add a \(C \)
Check!

\[y = -\frac{1}{3} + ce^{x^3} \]
\[y' = 3c e^{x^3} x^2 \]
\[y' - 3x^2 y = 3c e^{x^3} x^2 - 3x^2 \left(-\frac{1}{3} + ce^{x^3} \right) = x^2 \]

\[y' + p(x) y = q(x) \]
\[G(x) y' + G(x) p(x) y = G(x) q(x) \]
\[\left(G(x) y \right)' = G(x) q(x) \]
\[G(x) y = \int G(x) q(x) \]
\[y = \frac{\int G(x) q(x)}{G(x)} \]

why doesn't work:

\[G(x) = e^{F(x)} \]
\[G'(x) = e^{F(x)} F'(x) \]
\[G(x) p(x) = e^{F(x)} p(x) \]
\[\int p = F \]
\[G(x) p(x) \]

remember to add a c then divide!
Solve \(xy' + 2y = 5x^3 \)

\[y(1) = 5y \]

1. Bring it to \(y' + p(x)y = q(x) \)

 \[xy' + 2y = 5x^3 \]

 \[y' + \frac{2}{x} y = 5x^2 \]

2. \(p(x) = \frac{2}{x} \)

 \[q(x) = 5x^2 \]

3. \(F(x) = \int p(x) = \int \frac{2}{x} \, dx = 2 \ln |x| = \ln x^2 \)

4. \(G(x) = e^{F(x)} = e^{\ln x^2} \)

 \[= x^2 \]

5. \(\int G(x)q(x) = \int x^2 \cdot 5x^2 \, dx \)

 \[= \int 5x^4 \, dx \]

 \[= \frac{5x^5}{5} + c \]

 \[= x^5 + c \]

6. \[\frac{\int G(x)q(x)}{G(x)} = \frac{x^5 + c}{x^2} = x^3 + cx^{-2} \]
\[y = x^3 + \xi x^{-2} \]
\[y' = 3x^2 + -2Cx^{-3} \]
\[xy' + 2y = 3x^3 - 2Cx^2 + 2x^3 + 2C x^{-2} \]
\[= 5x^3 \]

But not yet done

IVP

\[y(1) = \frac{5}{4} \]
\[y(x) = x^3 + Cx^{-2} \]
\[y(1) = 1 + C = \frac{5}{4} \]
\[\therefore C = \frac{1}{4} \]

\[y(x) = x^3 + \frac{1}{4x^2} \]
One compartment model

Absorption rate

(dotted arrow = not dependent on Q
(uptake rate)

Elimination rate
(relative rate)

Ex: Mussel in polluted water with polychloride biphenyls (PCB)

$Q(t) = \text{conc in mussel } \times \text{PCB (mg/gm tissue)}$

after 6 days

Mussels absorb 12 mg PCB/gm tissue/day

Elimination rate = 0.18 Q mg/gm tissue/1 day

$Q' = -0.18Q + 12$
Solve for Q!

What happens if no PCB is removed initially?

What happens after a very long time?

$$Q' = -0.18Q + 12$$
$$Q' + 0.18Q = 12$$

$p(t) = 0.18 \quad f(t) = 0.18k \quad g(t) = e^{0.18t}$

$q(t) = 12$

$$Q(t) = \frac{\int g(t) q(t) dt}{g(t)} = \frac{\int 12 e^{0.18t} dt}{e^{0.18t}}$$

$$= \frac{12 e^{0.18t}}{0.18} + c$$

$$= \frac{200}{3} + ce^{-0.18t}$$

$q(0) = 0 = \frac{200}{3} + c$

$$\therefore c = -\frac{200}{3}$$

$q(t) = \frac{200}{3} + \frac{200}{3} e^{-0.18t}$

$t \to \infty / \begin{bmatrix} 200 \cr \frac{200}{3} \end{bmatrix}$
$t \to \infty$

\(\phi \) shd stabilize

\(\phi' = 0 \)

\[0 + 0.18 \phi = 12 \]

\[\phi = \frac{12}{0.18} = \frac{200}{3} \quad \text{as } t \to \infty \]

next semester more at equilibrium!

Read ex 4 do sec 8.2

HW 8.2 3, 5, 13, 15, 17, 31, 20, 37, 38,

39, 40**