INTEGRALITY PROPERTIES OF THE CM-VALUES OF CERTAIN WEAK MAASS FORMS

ERIC LARSON AND LARRY ROLEN

Abstract. In a recent paper, Bruinier and Ono prove that the coefficients of certain weight $-1/2$ harmonic Maass forms are traces of singular moduli for weak Maass forms. In particular, for the partition function $p(n)$, they prove that

$$p(n) = \frac{1}{24n-1} \cdot \sum P_p(\alpha_Q),$$

where P_p is a weak Maass form and α_Q ranges over a finite set of discriminant $-24n + 1$ CM points. Moreover, they show that $6 \cdot (24n - 1) \cdot P_p(\alpha_Q)$ is always an algebraic integer, and they conjecture that $(24n - 1) \cdot P_p(\alpha_Q)$ is always an algebraic integer. Here we prove a general theorem which implies this conjecture as a corollary.

1. Introduction and Statement of Results

A partition of a positive integer n is any nonincreasing sequence of positive integers which sum to n. The partition function $p(n)$, which counts the number of partitions of n, is an important function in number theory whose study has a long history. One of the celebrated results of Hardy and Ramanujan on this function, giving rise to the “circle” method, quantifies the growth rate:

$$p(n) \sim \frac{1}{4n\sqrt{3}} \cdot e^{\pi\sqrt{2n/3}}.$$

This asymptotic and its method of proof were later refined by Rademacher, yielding an “exact” formula in terms of a modified Bessel function of the first kind $I_{3/2}(\cdot)$ and a Kloosterman sum $A_k(n)$:

$$p(n) = 2\pi(24n - 1)^{-\frac{3}{2}} \sum_{k=1}^{\infty} \frac{A_k(n)}{k} \cdot I_{3/2} \left(\frac{\pi\sqrt{24n - 1}}{6k} \right).$$

The authors are grateful for the support of the NSF in funding the Emory 2011 REU. The authors would like to thank our advisor Ken Ono for his guidance, useful conversations, improving the quality of exposition of this article, and hosting the REU.
One can compute values of $p(n)$ from this formula by using sufficiently accurate truncations. Bounding the resulting error is a well-known difficult problem; the best-known bounds are due to Folsom and Masri [4].

In recent work [2], Bruinier and Ono prove a new formula for $p(n)$ as a finite sum of algebraic numbers. These numbers are singular moduli for a weak Maass form which they describe in terms of Dedekind’s eta function and the quasimodular Eisenstein series E_2, which are defined in terms of $q := e^{2\pi iz}$ as

$$
\eta(z) := q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \quad \text{and} \quad E_2(z) := 1 - 24 \sum_{n=1}^{\infty} \frac{\sum_{d|n} d q^n}{\eta(n)^2}.
$$

They then define the $\Gamma_0(6)$ weight -2 meromorphic modular form:

$$
F_p(z) := \frac{1}{2} \cdot \frac{E_2(z) - 2E_2(2z) - 3E_2(3z) + 6E_2(6z)}{\eta(z)^2 \eta(2z)^2 \eta(3z)^2 \eta(6z)^2} = q^{-1} - 10 - 29q - \cdots
$$

Using the convention that $z := x + iy$, with $x, y \in \mathbb{R}$, they define the weak Maass form:

$$
P_p(z) := - \left(\frac{1}{2\pi i} \cdot \frac{d}{dz} + \frac{1}{2\pi y} \right) F_p(z) = \left(1 - \frac{1}{2\pi y} \right) q^{-1} + \frac{5}{\pi y} + \left(29 + \frac{29}{2\pi y} q \right) + \cdots
$$

Bruinier and Ono give a formula for $p(n)$ in terms of discriminant $-24n+1 = b^2 - 4ac$ positive definite integral binary quadratic forms $Q(x, y) = ax^2 + bxy + cy^2$ satisfying the condition $6 \mid a$. The group $\Gamma_0(6)$ acts on such forms, and we let \mathcal{Q}_n be any set of representatives of those equivalence classes with $a > 0$ and $b \equiv 1 \pmod{12}$. To each such Q, we associate the CM point α_Q defined to be the root of $Q(x, 1) = 0$ lying in the upper half of the complex plane. Then the formula of Bruinier and Ono states:

$$
p(n) = \frac{1}{24n-1} \cdot \sum_{Q \in \mathcal{Q}_n} P_p(\alpha_Q).
$$

They further prove that each $6 \cdot (24n-1) \cdot P_p(\alpha_Q)$ is an algebraic integer. They also show that the numbers $P(\alpha_Q)$, as Q varies over \mathcal{Q}_n, form a multiset which is a union of Galois orbits for the discriminant $-24n+1$ ring class field. Based on numerics, they made the following conjecture:

Conjecture (Bruinier and Ono [2]). *For the Maass form $P_p(z)$ above and for the α_Q in the formula for $p(n)$, we have that $6 \cdot (24n-1) \cdot P_p(\alpha_Q)$ is an algebraic integer.*

Such integrality questions for singular moduli are first mentioned in Zagier’s seminal paper on traces of singular moduli [8], where he notes that singular moduli of non-holomorphic modular functions need not be algebraic integers. The integrality of traces of singular moduli of derivatives of modular forms is studied in depth in
level 1 by Duke and Jenkins \cite{duke}, and further integrality results for other coefficients of Hilbert class polynomials are derived in a forthcoming paper by the second author and Griffin \cite{griffin}.

In this paper, we prove the conjecture of Bruinier and Ono. In fact, we prove that this is the true for all the CM points of discriminant $-24n + 1$ of a wider class of Maass forms. We first recall the following classical Eisenstein series:

$$E_4(z) := 1 + 240 \sum_{n=1}^{\infty} \sum_{d|n} d^3 q^{n}, \quad E_6(z) := 1 - 504 \sum_{n=1}^{\infty} \sum_{d|n} d^5 q^{n}.$$

Then our main result is the following:

Theorem 1.1. Suppose F is a weakly holomorphic, weight -2 modular form on a congruence subgroup such that the Fourier expansions of

$$F \quad \text{and} \quad q \frac{dF}{dq} + F \cdot \frac{E_2 E_4 - E_6}{6E_4}$$

at all cusps have coefficients that are algebraic integers. Let α_Q be the CM point in \mathbb{H} corresponding to a quadratic form $Q(x, y)$ of discriminant $-24n + 1$, and let $P(z)$ be the weak Maass form

$$P(z) = - \left(\frac{1}{2\pi i} \cdot \frac{d}{dz} + \frac{1}{2\pi y} \right) F(z).$$

Then $(24n - 1) \cdot P(\alpha_Q)$ is an algebraic integer.

Remark. We recall that a meromorphic modular form is said to be weakly holomorphic if its poles are supported on the cusps.

The form $F_p(z)$ studied by Bruinier and Ono satisfies these conditions. One can see this because $F_p(z)$ has level 6, so the group of Atkin-Lehner involutions acts transitively on the cusps. Since $F_p(z)$ is an eigenform for all of the Atkin-Lehner involutions and has an integral Fourier expansion at infinity, it follows that the Fourier expansions of F_p at all cusps is integral. Moreover, since the Atkin-Lehner involutions commute with the Maass raising operator

$$R_{-2} = -4\pi q \frac{d}{dq} - \frac{2}{y},$$

the Fourier expansion of

$$q \frac{dF_p}{dq} + F \cdot \frac{E_2 E_4 - E_6}{6E_4} = F_p \cdot \left(\frac{E_2 - \frac{3}{\pi \mathrm{Im} z}}{\pi \mathrm{Im} z} \right) \frac{E_4 - E_6}{6E_4} - \frac{1}{4\pi} R_{-2} F_p$$

at all cusps is integral as well. Therefore, Theorem 1.1 implies the following:

Corollary 1.2. The conjecture of Bruinier and Ono is true.
Remark. Corollary 1.2 is sharp for small (and possibly all) n. For example, we have
\[\prod_{m=1}^{3} (x - P_p(\alpha_{Q_m})) = x^3 - 23x^2 + \frac{3592}{23}x - 419, \]
where Q_m ranges over any choice of representatives of Q_1.

Returning to the general case of $P(z)$ as in Theorem 1.1, the work of Bruinier and Ono (Theorem 4.5 of [2]) implies $6 \cdot (24n - 1) \cdot P(\alpha_Q)$ is an algebraic integer. Although this theorem is stated for squarefree level and when F is an eigenfunction of the Atkin-Lehner involutions, an inspection of the proof shows that the assumptions in the statement of Theorem 1.1 are also sufficient (as we are assuming integrality of f at all cusps). Thus it suffices to show that $P(\alpha_Q)$ is integral at primes lying over 6. We will henceforth refer to this property as 6-integrality. For this purpose, it is convenient to decompose P as
\[P = A + B \cdot C, \]
where
\[A = F \left(\frac{dF}{dq} - \frac{1}{6} FE_2 + \frac{FE_6(7j - 6912)}{6E_4(j - 1728)} \right), \]
\[B = \frac{FE_6j}{E_4}, \]
\[C = \frac{E_4}{6E_6j} \left(E_2 - \frac{3}{\pi \text{Im} z} \right) - \frac{7j - 6912}{6j(j - 1728)}. \]

To establish the 6-integrality of $P(\alpha_Q)$, it suffices to establish the 6-integrality of each of $A(\alpha_Q)$, $B(\alpha_Q)$ and $C(\alpha_Q)$. In Section 2 we will use methods similar to those of [2] to show that $A(\alpha_Q)$ and $B(\alpha_Q)$ are 6-integral. Then in Section 3 we show that $C(\alpha_Q)$ is 6-integral using a description of C in terms of classical modular polynomials due to Masser.

Remark. For the remainder of this paper, we fix $D \equiv 1 \mod 24$ with $D < 0$, and we let α_Q denote any CM point of discriminant D.

2. Proof of 6-Integrality of A and B

In this section, we prove the 6-integrality of A and B at the CM-points α_Q. We begin by showing that $j(\alpha_Q)$ is a unit at 2 and 3. Recall that in our case, the discriminant is congruent to $-1 \mod 24$, so in particular it is coprime to 2 and 3.

Lemma 2.1. Let $p \in \{2, 3\}$ and E be an elliptic curve defined over a number field K. If E has good ordinary reduction at all primes lying over p, then $j(E)$ is coprime to p.
Proof. Assume to the contrary that \(j(E) \) was not coprime to \(p \); write \(p \) for a prime ideal lying over \(p \) containing \(j(E) \), and write \(k \) for the residue field \(\mathcal{O}_K/p \).

When \(p = 2 \), the elliptic curve \(E^2 = \mathbb{C}/\mathbb{Z}[\omega] \) (where \(\omega \) is a primitive cube root of unity) has good supersingular reduction at \(p \). But \(j(\omega) = 0 \), so \(E^2/k \cong E_{/k} \), so \(E_{/k} \) is supersingular, which is a contradiction.

Similarly, when \(p = 3 \), the elliptic curve \(E^3 = \mathbb{C}/\mathbb{Z}[i] \) has good supersingular reduction at \(p \). But \(j(\omega) = 1728 \), so \(E^3/k \cong E_{/k} \), so \(E_{/k} \) is supersingular, which is a contradiction. \(\square \)

By this lemma, it suffices to show that both \(B \) and \(A' := A \cdot j \cdot (j - 1728) \) assume integral values at all CM-points.

Lemma 2.2. The modular functions \(A' \) and \(B \) are weakly holomorphic and have integral Fourier expansions at all cusps.

Proof. By definition, we have

\[
B = F \cdot E_6 \cdot \frac{j}{E_4},
\]

and by direct examination, all three of the above terms are weakly holomorphic and have integral Fourier expansions at all cusps. Similarly, by definition, we have

\[
A' = F \cdot E_6(j - 864) \cdot \frac{j}{E_4} - (j - 1728) \cdot \left[j \cdot \left(q \frac{dF}{dq} + F \cdot \frac{E_2E_4 - E_6}{6E_4} \right) \right],
\]

and all of the above terms are weakly holomorphic and have integral Fourier expansions at all cusps. \(\square \)

Lemma 2.3. A weakly holomorphic modular function \(g \) for a congruence subgroup \(\Gamma_g \) that has integral Fourier expansions at all cusps is integral at any CM-point.

Proof. (The following argument is classical, probably originally due to Kronecker and Weber.) We consider the polynomial

\[
\Psi_g(X, z) = \prod_{\gamma \in \Gamma_g \setminus \Gamma(1)} (X - g(\gamma z)).
\]

This is a monic polynomial in \(X \) of degree \([\Gamma(1) : \Gamma_g] \) whose coefficients are weakly holomorphic modular functions in \(z \) for the group \(\Gamma(1) \), so \(\Psi_g(X, z) \in \mathbb{C}[j(z), X] \).

Our assumption that \(g \) has integral Fourier expansion at all cusps implies that for any \(\gamma \in \Gamma(1) \), the modular function \(g \mid \gamma \) has a Fourier expansion at infinity whose coefficients are algebraic integers. Thus, the coefficients of \(\Psi_g(X, z) \) are polynomials in \(j(z) \) whose coefficients are algebraic integers.

Since \(j \) is integral at any CM-point \(\alpha \), the value \(g(\alpha) \) satisfies a monic polynomial whose coefficients are algebraic integers, and is therefore an algebraic integer (note that \(\Psi_g(g(z), z) = 0 \)). \(\square \)
Remark. In Appendix A, we give values of the polynomials Ψ_A and Ψ_B for the form F_p considered by Bruinier and Ono, thus providing a direct proof of the integrality of $A'(\alpha_Q)$ and $B(\alpha_Q)$ in this case.

Lemma 2.4. If α_Q is an CM-point with discriminant $D \equiv 1 \mod 24$, then $A(\alpha_Q)$ and $B(\alpha_Q)$ are 6-integral.

Proof. This follows from combining Lemmas 2.1, 2.2, and 2.3. □

3. Proof of 6-Integrality for $C(\alpha_Q)$

In this section, we finish the proof of Theorem 1.1 by showing that $C(\alpha_Q)$ is 6-integral at the required CM points α_Q. To do this, we study the classical modular polynomials Φ_{-D}, in a fashion similar to Appendix 1 of [6]. We begin by reviewing the definition of Φ_{-D}.

Definition 1. We say that two matrices B_1 and B_2 are equivalent if $B_1 = X \cdot B_2$ for some $X \in \text{SL}_2(\mathbb{Z})$.

It is well-known that there are only finitely many equivalence classes of primitive integer matrices of determinant $-D$. Write M_1, M_2, \ldots, M_n for these equivalence classes and suppose M_1 is such that $\alpha_Q = M_1 \alpha_Q$.

Definition 2. We write $\Phi_{-D}(X, Y)$ for the classical modular polynomial, i.e. the polynomial such that

$$\Phi_{-D}(j(z), Y) = \prod_{i=1}^{n} (Y - j(M_i z)).$$

By [1], Theorem 1 of Section 3.4, the polynomial $\Phi_{-D}(X, Y)$ is symmetric in X and Y and has coefficients that are rational integers. In particular, we can expand $\Phi_{-D}(X, Y)$ in a power series about $X = Y = j(\alpha_Q)$ as

$$\Phi(X, Y) = \sum_{\mu, \nu} \beta_{\mu, \nu} (X - j(\alpha_Q))^\mu (Y - j(\alpha_Q))^\nu,$$

where $\beta_{\mu, \nu} = \beta_{\nu, \mu}$. We write $\beta = \beta_{0,1} = \beta_{1,0}$.

We define Q to be special if there is more than one equivalence class of matrices M such that $M \alpha_Q = \alpha_Q$. This can only happen if $D = 3d^2$ for some integer d (see [6], Appendix 1), so in particular forms of discriminant $-24n + 1$ are not special.

Lemma 3.1 (Masser). If Q is not special, we have $\beta \neq 0$ and

$$C(\alpha_Q) = \frac{\beta_{0,2} - \beta_{1,1} + \beta_{2,0}}{\beta}.$$
Proof. See [6], Appendix 1 (in particular, equations (100) and (106), and the definition of γ on page 118). □

By definition, the $\beta_{\mu,\nu}$ are algebraic integers. Thus, to prove that $C(\alpha_Q)$ is integral at primes lying over 6, it suffices to show that β is a unit at primes lying over 6. From the definition of β, we have

$$\beta = \prod_{i=2}^{n} (j(\alpha_Q) - j(M_i\alpha_Q)).$$

Thus, it suffices to show that for any prime p lying over 6, we have $j(\alpha_Q) \not\equiv j(M_i\alpha_Q) \mod p$. To show this, it is enough to establish another lemma on elliptic curves. Recall that by definition of the M_i, we have that $j(\alpha_q) \not\equiv j(M_i\alpha_q)$ for $i = 2, \ldots, n$.

Suppose two such values were congruent, so we would have an isomorphism between the corresponding elliptic curves when reduced mod p. Then we show that the isomorphism could be lifted to an isomorphism of the original curves, which is a contradiction.

Lemma 3.2. Suppose p is a prime ideal of a number field K. Suppose E and E' are two elliptic curves over K having complex multiplication by orders containing a common order R in a quadratic field F. Suppose the index $[O_F : R]$ is coprime to the residue characteristic of p. If both curves have good ordinary reduction at p and the reduced curves are isomorphic, then E and E' are also isomorphic.

Proof. Write k for the residue field O_K/p and $p = \text{char}(k)$. As the index of R in O_F is coprime to p, there is an isogeny $f : E \to E'$ defined over \mathbb{C} whose degree is coprime to p. (Viewing E and E' as quotients of \mathbb{C} by lattices, this follows from the fact that every element of the class group has a representative coprime to p.) Enlarging K if necessary, we may suppose f is defined over K. Since E has ordinary reduction at p, its endomorphisms over k are a rank-2 submodule S of O_F which contains R. As the index of R in O_F is coprime to p, the index d of R in S is also coprime to p. Choose an isomorphism between the reductions E/k and E'/k. Composing this with the isogeny f gives an endomorphism of E/k, and multiplying this endomorphism by d gives an endomorphism which lifts to an endomorphism g of E whose degree is coprime to p. Now the specializations of the kernels of $f \circ d$ and g coincide by construction, and both kernels are subgroups whose order is coprime to p. Thus, $\ker f \circ d = \ker g$, and therefore $E \cong E'$.

This completes the proof of the 6-integrality of $C(\alpha_Q)$, as the assumption $D \equiv 1 \mod 24$ shows that the conditions of the above lemma are satisfied. By the discussion in Section [11] this establishes Theorem [1.1].
Appendix A. The Polynomials $\Psi_{A'}$ and Ψ_B for $F = F_p$

Here, we give the explicit values of the polynomials $\Psi_{A'}$ and Ψ_B when $F = F_p$ is the form considered by Bruinier and Ono in [2]. Namely, we have

$$\Psi_{A'} = X^{12} + \sum_{i=0}^{11} a_i X^i \quad \text{and} \quad \Psi_B = X^{12} + \sum_{i=0}^{11} b_i X^i,$$

where the a_i and b_i are the polynomials in j with integer coefficients given below.

\[\begin{align*}
a_{11} &= -2 \cdot (j - 2^6 \cdot 3^3) \cdot (j - 2^5 \cdot 3^3) \cdot j \\
a_{10} &= -(j - 2^6 \cdot 3^3) \cdot j^2 \cdot (7 \cdot 67 \cdot j^2 - 2^6 \cdot 3^2 \cdot 2053 \cdot j + 2^{11} \cdot 3^5 \cdot 31 \cdot 53) \\
a_9 &= 2 \cdot (j - 2^6 \cdot 3^3)^2 \cdot j^2 \cdot (3^2 \cdot j^4 - 2^3 \cdot 6379 \cdot j^3 + 2^6 \cdot 3^2 \cdot 162713 \cdot j^2 \\
&\quad - 2^{12} \cdot 3^3 \cdot 72979 \cdot j + 2^{25} \cdot 3^{12}) \\
a_8 &= 2 \cdot (j - 2^6 \cdot 3^3)^2 \cdot j^3 \cdot (2 \cdot 7 \cdot 13^2 \cdot j^5 - 2^3 \cdot 409 \cdot 3373 \cdot j^4 \\
&\quad + 2^7 \cdot 3^4 \cdot 1237 \cdot 1973 \cdot j^3 - 2^{14} \cdot 3^7 \cdot 5 \cdot 311 \cdot 443 \cdot j^2 \\
&\quad + 2^{41} \cdot 3^{10} \cdot 31 \cdot 2897 \cdot j - 2^{31} \cdot 3^{14} \cdot 163) \\
a_7 &= 2^2 \cdot (j - 2^6 \cdot 3^3)^3 \cdot j^4 \cdot (11 \cdot 61 \cdot 193 \cdot j^5 - 2^3 \cdot 3 \cdot 27510443 \cdot j^4 \\
&\quad + 2^9 \cdot 3^3 \cdot 97550587 \cdot j^3 - 2^{16} \cdot 3^6 \cdot 11 \cdot 2599451 \cdot j^2 \\
&\quad + 2^{13} \cdot 3^9 \cdot 5 \cdot 739 \cdot 1109 \cdot j - 2^{34} \cdot 3^{13} \cdot 4691) \\
a_6 &= 2^3 \cdot (j - 2^6 \cdot 3^3)^3 \cdot j^4 \cdot (2^4 \cdot 3^2 \cdot j^8 + 7 \cdot 199 \cdot 1373 \cdot j^7 \\
&\quad - 2^2 \cdot 29 \cdot 37 \cdot 281 \cdot 13913 \cdot j^6 + 2^{13} \cdot 3^3 \cdot 7 \cdot 233 \cdot 143281 \cdot j^5 \\
&\quad - 2^{15} \cdot 3^2 \cdot 5 \cdot 11 \cdot 21117827 \cdot j^4 + 2^{23} \cdot 3^9 \cdot 3943 \cdot 117577 \cdot j^3 \\
&\quad - 2^{31} \cdot 3^{12} \cdot 769 \cdot 45317 \cdot j^2 + 2^{41} \cdot 3^{16} \cdot 7 \cdot 15923 \cdot j - 2^{50} \cdot 3^{20} \cdot 269) \\
a_5 &= 2^4 \cdot (j - 2^6 \cdot 3^3)^4 \cdot j^5 \cdot (2^6 \cdot 3^4 \cdot 5 \cdot j^8 - 7 \cdot 5051 \cdot 5939 \cdot j^7 \\
&\quad + 2^3 \cdot 3^2 \cdot 5 \cdot 61 \cdot 101 \cdot 330037 \cdot j^6 - 2^9 \cdot 3^5 \cdot 96289 \cdot 119173 \cdot j^5 \\
&\quad + 2^{16} \cdot 3^9 \cdot 17 \cdot 7752741 \cdot j^4 - 2^{22} \cdot 3^{11} \cdot 11 \cdot 71 \cdot 523 \cdot 4091 \cdot j^3 \\
&\quad + 2^{35} \cdot 3^{14} \cdot 5 \cdot 673 \cdot 977 \cdot j^2 - 2^{41} \cdot 3^{18} \cdot 79 \cdot 1831 \cdot j + 2^{55} \cdot 3^{24}) \\
a_4 &= (j - 2^6 \cdot 3^3)^4 \cdot j^6 \cdot (2^8 \cdot 3^3 \cdot 5 \cdot 2003 \cdot j^9 - 409 \cdot 39157 \cdot 44483 \cdot j^8 \\
&\quad + 2^9 \cdot 3 \cdot 2092618568983 \cdot j^7 - 2^{20} \cdot 3^4 \cdot 98512996093 \cdot j^6 \\
&\quad + 2^{20} \cdot 3^7 \cdot 41 \cdot 242261 \cdot 608831 \cdot j^5 - 2^{28} \cdot 3^{10} \cdot 5 \cdot 1231 \cdot 155631757 \cdot j^4 \\
&\quad + 2^{32} \cdot 3^{13} \cdot 521 \cdot 3077579657 \cdot j^3 - 2^{42} \cdot 3^{16} \cdot 997 \cdot 1607 \cdot 16657 \cdot j^2 \\
&\quad + 2^{52} \cdot 3^{20} \cdot 23 \cdot 541 \cdot 6863 \cdot j - 2^{63} \cdot 3^{24} \cdot 5 \cdot 11987)
\[a_3 = 2 \cdot (j - 2^6 \cdot 3^3)^5 \cdot j \cdot (3^2 \cdot 377732207 \cdot j^{10} - 2^6 \cdot 5^2 \cdot 7 \cdot 101 \cdot 28520381 \cdot j^9 \\
+ 2^{11} \cdot 11 \cdot 337 \cdot 17990477821 \cdot j^8 - 2^{20} \cdot 3^3 \cdot 179 \cdot 389 \cdot 171956657 \cdot j^7 \\
+ 2^{23} \cdot 3^6 \cdot 5 \cdot 479 \cdot 37193046587 \cdot j^6 - 2^{30} \cdot 3^9 \cdot 1283 \cdot 28703 \cdot 758137 \cdot j^5 \\
+ 2^{36} \cdot 3^{12} \cdot 7 \cdot 31 \cdot 54791988203 \cdot j^4 - 2^{45} \cdot 3^{15} \cdot 192 \cdot 151 \cdot 7738067 \cdot j^3 \\
+ 2^{55} \cdot 3^{20} \cdot 41 \cdot 12810583 \cdot j^2 - 2^{65} \cdot 3^{24} \cdot 1103107 \cdot j + 2^{76} \cdot 3^{27} \cdot 1447) \\
\]
\[a_2 = 2^2 \cdot (j - 2^6 \cdot 3^3)^5 \cdot j \cdot (42967 \cdot 2406947 \cdot j^{11} - 2^3 \cdot 557 \cdot 1783 \cdot 140768209 \cdot j^{10} \\
+ 2^9 \cdot 3^4 \cdot 6205891 \cdot 21226039 \cdot j^9 - 2^{19} \cdot 3^7 \cdot 5 \cdot 11 \cdot 251872948013 \cdot j^8 \\
+ 2^{24} \cdot 3^9 \cdot 5 \cdot 13 \cdot 23 \cdot 37 \cdot 521 \cdot 3203149 \cdot j^7 - 2^{29} \cdot 3^{13} \cdot 47242981376477 \cdot j^6 \\
+ 2^{35} \cdot 3^{16} \cdot 227 \cdot 112292655271 \cdot j^5 - 2^{41} \cdot 3^{18} \cdot 107 \cdot 269749728667 \cdot j^4 \\
+ 2^{54} \cdot 3^{22} \cdot 43 \cdot 449215127 \cdot j^3 - 2^{61} \cdot 3^{27} \cdot 5 \cdot 653 \cdot 54193 \cdot j^2 \\
+ 2^{72} \cdot 3^{30} \cdot 139 \cdot 3719 \cdot j - 2^{82} \cdot 3^{35} \cdot 139) \\
\]
\[a_1 = 2^3 \cdot (j - 2^6 \cdot 3^3)^6 \cdot j \cdot (1847032397279 \cdot j^{11} - 2^6 \cdot 47 \cdot 157 \cdot 3691 \cdot 11660843 \cdot j^{10} \\
+ 2^{14} \cdot 3^4 \cdot 383 \cdot 25679 \cdot 7797631 \cdot j^9 - 2^{20} \cdot 3^6 \cdot 400129001343469 \cdot j^8 \\
+ 2^{24} \cdot 3^9 \cdot 5 \cdot 41 \cdot 503 \cdot 67307 \cdot 267271 \cdot j^7 \\
- 2^{30} \cdot 3^{12} \cdot 19 \cdot 509 \cdot 13597 \cdot 11431571 \cdot j^6 \\
+ 2^{37} \cdot 3^{15} \cdot 31 \cdot 3038701 \cdot 4610147 \cdot j^5 - 2^{43} \cdot 3^{20} \cdot 7^2 \cdot 41 \cdot 73 \cdot 2381 \cdot 56891 \cdot j^4 \\
+ 2^{52} \cdot 3^{21} \cdot 5 \cdot 139 \cdot 9239401667 \cdot j^3 - 2^{62} \cdot 3^{25} \cdot 5 \cdot 1381 \cdot 3698087 \cdot j^2 \\
+ 2^{73} \cdot 3^{29} \cdot 11 \cdot 47 \cdot 58693 \cdot j - 2^{85} \cdot 3^{33} \cdot 8161) \\
\]
\[a_0 = -2^4 \cdot (j - 2^6 \cdot 3^3)^6 \cdot j \cdot (2^3 \cdot 3^2 \cdot 7^6 \cdot j^{14} - 5 \cdot 13 \cdot 3109 \cdot 76441597 \cdot j^{13} \\
+ 2^4 \cdot 3449 \cdot 4363 \cdot 873750089 \cdot j^{12} - 2^{11} \cdot 3^4 \cdot 7 \cdot 2087 \cdot 57859 \cdot 9420337 \cdot j^{11} \\
+ 2^{16} \cdot 3^8 \cdot 11^2 \cdot 73 \cdot 125183 \cdot 10636957 \cdot j^{10} - 2^{26} \cdot 3^9 \cdot 691 \cdot 14434308694753 \cdot j^9 \\
+ 2^{31} \cdot 3^{13} \cdot 101 \cdot 283 \cdot 252059913139 \cdot j^8 \\
- 2^{37} \cdot 3^{16} \cdot 11 \cdot 13 \cdot 17 \cdot 647 \cdot 863 \cdot 4253233 \cdot j^7 \\
+ 2^{43} \cdot 3^{18} \cdot 631819 \cdot 1645187913 \cdot j^6 - 2^{48} \cdot 3^{23} \cdot 149 \cdot 233 \cdot 90533 \cdot 330413 \cdot j^5 \\
+ 2^{59} \cdot 3^{25} \cdot 23 \cdot 1408302006413 \cdot j^4 - 2^{70} \cdot 3^{27} \cdot 726838208711 \cdot j^3 \\
+ 2^{80} \cdot 3^{32} \cdot 7 \cdot 263 \cdot 337 \cdot 1327 \cdot j^2 - 2^{90} \cdot 3^{37} \cdot 569731 \cdot j + 2^{100} \cdot 3^{39} \cdot 173) \\
\]
\[b_{11} = -(j - 2^6 \cdot 3^3) \cdot j \\
\]
\[b_{10} = -2 \cdot 13 \cdot 3^2 \cdot (j - 2^6 \cdot 3^3) \cdot j^2 \\
\]
\[b_9 = 2^2 \cdot (j - 2^3 \cdot 3^6) \cdot (j - 2^6 \cdot 3^3)^2 \cdot j^2 \\
\]
\[b_8 = 3^4 \cdot (13 \cdot j - 2^5 \cdot 3 \cdot 163) \cdot (j - 2^6 \cdot 3^3)^2 \cdot j^3 \\
\]
\[b_7 = 5 \cdot 2^5 \cdot 3^6 \cdot (j - 2^6 \cdot 3^3)^3 \cdot j^4\]
\[b_6 = 2^2 \cdot 3^3 \cdot (j - 2^6 \cdot 3^3)^3 \cdot j^4 \cdot (j^2 + 2^4 \cdot 3^5 \cdot 13 \cdot j - 2^9 \cdot 3^5 \cdot 269)\]
\[b_5 = 2^5 \cdot 3^5 \cdot (5 \cdot j - 2^6 \cdot 3^4) \cdot (j - 2^6 \cdot 3^3)^4 \cdot j^5\]
\[b_4 = 2^8 \cdot 3^8 \cdot (31 \cdot j - 2^3 \cdot 3^2 \cdot 1471) \cdot (j - 2^6 \cdot 3^3)^4 \cdot j^6\]
\[b_3 = 2^8 \cdot 3^8 \cdot (383 \cdot j - 2^6 \cdot 3 \cdot 1447) \cdot (j - 2^6 \cdot 3^3)^5 \cdot j^6\]
\[b_2 = 2^9 \cdot 3^9 \cdot (3923 \cdot j - 2^6 \cdot 3^5 \cdot 139) \cdot (j - 2^6 \cdot 3^3)^5 \cdot j^7\]
\[b_1 = 13 \cdot 19 \cdot 3^{11} \cdot 2^{15} \cdot (j - 2^6 \cdot 3^3)^6 \cdot j^8\]
\[b_0 = -2^8 \cdot 3^9 \cdot (j - 2^6 \cdot 3^3)^6 \cdot j^8 \cdot (j^2 - 2^7 \cdot 3^3 \cdot 1399 \cdot j + 2^{12} \cdot 3^6 \cdot 17^3)\]

References

Department of Mathematics. Harvard University, Cambridge, MA 02138.
E-mail address: elarson3@gmail.com

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322.
E-mail address: larry.rolen@mathcs.emory.edu