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Congruences on the Fourier coefficients
of modular forms on I'j(N)
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ABSTRACT. Swinnerton-Dyer used ¢-adic Galois representations to classify
congruences satisfied by Ramanujan’s 7(n) function. He proved the classi-
cal Ramanujan congruence 7(n) = 011(n) mod 691 by applying modern
techniques from modular form theory. By classif: ying subgroups of GL, (Fe),
he identified congruences which arise when the image of a certain Galois
group is ‘small’ under an f-adic representation. The methodology given by
Swinnerton-Dyer applies to normalized simultaneous eigenforms on the full
modular group S$L,(Z) with integer coefficients . Here these methods are
generalized to include modular forms on I’y {N) with character .

1. Introduction

In 1969, Deligne [D] proved Serre’s conjecture on the existence of f-adic Ga-
lois representations p; attached to modular forms on [o(N). Then, in 1972,
Swinnerton-Dyer [S-D] determined the possible images of j,, the reduction
mod £ of p,, and showed that ‘small’ images imply certain congruences among
modular forms of level one. In this paper we shall show that Swinnerton-Dyer’s
method and proof go through for eigenforms of level N : The novelty here is
that certain possibilities for the images of py, which are ruled out in the level
one setting, do occur in the level N case. These cases are analyzed in Theorems
3.2 and 3.3 (cf. (iv), (v)).

We will use the notation adopted by Swinnerton-Dyer [S-D],[S-D2]. Let ¢ be
a rational prime. Denote by K, the maximal algebraic extension of Q ramified
only at £. Let K2® be the maximal subfield of K¢ abelian over Q. If p #/1s a
rational prime, we denote by Frob(p) the conjugacy class of Frobenius elements
for p in Gal(K,/Q). Let Z, be the ring of f-adic integers, and F, = Z[eZ its
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residue class field. The canonical isomorphism y; of Gal(K§*/Q) — Z; induces
a canonical character x; : Gal(K./Q) — Z;. For all p # £ this character satisfies
x¢(Frob(p)) = p.

In Section 2 we recall basic definitions and the theorems of Deligne and Serre
[D], [D,S] concerning the existence of the desired Galois representations. When
the image of Gal(Q/Q) is small, congruences satisfied by the coefficients of a
modular form arise from relations between the trace and determinant of the ma-
trices representing Frobenius elements. This is discussed in Section 3. In Section
4, facts about modular forms mod £ are presented. Examples of congruences
are given in Section 5.

2. Preliminaries

Let N > 1 be a rational integer. Then we define the following congruence
subgroups of SLy(Z). Let A denote the matrix below with integer entries:

= (20)

1) A €Tg(N)<=c=0 mod N.

ii)AeTy(N)<=a=d=1 mod N andc=0 mod N.

iii) A€ (N)<=a=d=1 mod N and b=c=0 mod N.

Let ¢ be a Dirichlet character mod N. This means that ¢ : (Z/NZ)* — C*
is a homomorphism. Let k € Z where ¢(—1) = (=1)F. If f is a modular form
of weight k with respect to I'}(N) satisfying f(A7) = €(d)(cr + d)* f(7) for all
‘7 € H (where H is the upper half complex plane) and for all A € T'o(N) we say
that f is a modular form of type (k,€) on ['o(N). The character ¢ is called the
Nebentypus character of f.

Let f = Y a(n)q™ be the Fourier expansion of a modular form of type (k,¢)
on ['o(N) at 7 = ico. Here ¢ = e2™7 is the uniformizing variable at infinity. If
p is a rational prime , we define the Hecke operator T, by

T, = 3 alen)a™ + €@ Y a(n)e™"

Note that if p | N then ¢(p) = 0, so T, reduces to the dissection operator U,
~ defined by:
fl1Uy =) alpn)g®

This paper classifies congruences satisfied by a(n) for a particular class of
modular forms of type (k,¢) on To(N). This class consists of cusp forms f that
satisfy the following:

a) f is an eigenform of the Hecke operators T, for all primes p € Z

b) the Fourier coeflicients a(n) of f are rational integers, and a(1) = 1.

THEOREM 2.1. (Deligne-Serre)
Let f be a modular form of type (k,¢) on [o(N). satzsfyzng a) and b) above If
k > 1 then for every rational prime € there is a conlinuous linear representalion
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pe - Gal(Q/Q) — GLy(Z,)
which is unramified outside N¢ such that for all primes p with p J{N we have:

tr(pe(Frob(p)) = a(p)
det(pe(Frob(p)) = e(p)p*~*.

REMARK 2.1. If p is a prime with P V(N then the theorem implies that the
characteristic polynomial of p,( Frob(p)) is congruent to

z? —a(p)z + ¢(p)p*~' mod .

3. Congruences induced by Galois representations

" The search for congruences depends on the classification of subgroups of
GLy(F;). Given a modular form f and its associated representation pe, congru-
ences hold when the image p;(Gal(Q/Q)) does not contain SLy(Z;). For £ > 3,
this happens only if 5,(Gal(Q/Q)) does not contains SLy(Fg), where p; is the
reduction of p, modulo £. In this case we say that £ is an ‘ezceptional prime’
for f and we call the image pe(Gal(Q/Q)) “small’ Tt will now be shown that
identifying certain congruences reduces to a search for exceptional primes for f.

A Borel subgroup of GLy(Fy) is any subgroup which is conjugate to the group
of nonsingular upper-triangular matrices. There are two types of Cartan sub-
groups of GLy(F;). A split Cartan subgroup is any subgroup conjugate to the
group of nonsingular diagonal matrices. Hence a split Cartan subgroup is the
direct product of two cyclic groups of order £ — 1. ‘

A nonsplit Cartan subgroup is defined as follows. Let V be a 2 dimensional
vector space over Fy, and W its extension by scalars in Fy2 :

W = V®p¢ Fy

The nontrivial automorphism o of Fje /Fe acts on W in the natural way.

Let U be a one-dimensional subspace of W with U # o(U). The nonsplit
Cartan subgroup associated with U consists of those elements of G Lo(Fy) that
have U and o(U) as eigenspaces. Each element of a nonsplit Cartan subgroup is
uniquely determined by its eigenvalue on U, since the eigenvalue for o(U) is its
conjugate. In particular a nonsplit Cartan subgroup is isomorphic to Fl*zf

REMARK 3.1. Since each element of the normalizer of a Cartan subgroup
either fixes or interchanges the associated eigenspaces, it follows that a Cartan
subgroup is of index 2 in its normalizer.

LEMMA 3.1. Let G be a subgroup of GLy(Fe). If €| |G|, then G is either
contained in a Borel subgroup of GLy(Fy) or contains SLa(Fe). If € [ | G|, let
H be the image of G in PGLy(Fy). In this case either
A. H is cyclic and G is contained in a Cartan subgroup of GLo(Fy)



or

B. H is dihedral and G is in the normalizer of a Cartan subgroup of G Lo(Fy),
but not in the Cartan subgroup ilself (This can occur only if £> 2.)

or

C. H is isomorphic to Ag Sy, or As. (The first two cases here can only occur if
2> 3 and the third case can occur only if £ > 5.

For the proof of this lemma see [S-D].

The Deligne-Serre representation p, is unramified outside N£. In general it
is ramified at the prime divisors of NZ. Recall that an £—adic representation
is unramified at a prirue p if it is trivial on the inertia group of p. When a
normalized cusp eigen-form is on 'g(£), then the representation p; factors through
Gal(K,/Q) [Se, p.I-7). We discuss the congruences of such forms in Theorem 3.2.
Before proceeding to congruences we make the following observation.

THEOREM 3.1. If£ = N then p; factors through K;.In this case, pe(Gal(K./Q))
cinnot be contained in a nonsplii Cartan subgroup of G Lo(Fy) without being con-
tained in a Borel subgroup.

" PrOOF. Suppose the image p,( Gal(K,/Q)) under p¢ is contained in a nonsplit
Cartan subgroup C. Since C is abelian, we have the following commutative
diagram:

pe
Gal(K,/Q)— C
vl /
Gal(K2b/Q)

(where v is the natural projection map). Since all finite factor groups of Gal(K¢/Q)
have order dividing £" (£ 1) for some n, it follows that | 5¢(Gal(K¢/Q)| | (£—-1).
Hence the matrices in p¢(Gal(K,/Q)) have eigenvalues in Fy since their minimal
polynomials divide ¢~ — 1. Since they commute, they can be simultaneously
diagonalized so Gal(K,/Q) is contained in a Borel subgroup. [

COROLLARY 3.1. Let f be a modular form of type (k,e) on T'o(£) satisfying a)
and b). Let £ be an exceptional prime for f and let py be the associated Galots
representation

ﬁe . Gal(I{[/Q) — GLQ(F[)

given by Serre and Deligne. Lel G = p(Gal(K¢/Q)) and let H be the image of
" G in PGLy(Fy). Then one of the following is true: :
(i) G C a Borel subgroup of G Lo(Fy).

or

(ii) G C the normalizer of a Cartan subgroup but not in the Cartan subgroup
itself. (This can occur only if £ > 2.) ‘
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or
(1ii)) H = Sy (This can occur only if £ > 3. )
or ' '

(w) H = Ay (This can occur only if £ > 3.)
or

(v) H = As (This can occur only if £ > 5. )

Now Swinnerton-Dyer type congruences on the Fourier coefficients of the form
[ can be classified by investigating the structure of the groups given in this
corollary.

THEOREM 3.2. Let f be a modular form of type (k,€) on To(€) satisfying a)
and b). If£ is an exceptional prime for f then we have the following congruences:
(1) If G C a Borel subgroup of GLo(F;) and € is trivial, then 3 an inleger m such
that if (n,€) = 1 then

a(n) = n"ok_1_2m(n) mod ¢

(i) If G C the normalizer of a Cartan subgroup but not in the Cartan subgroup
itself, then:

a(n)=0 mod¢  when (n,¢) =1 and (%) =-1

(iii) If H = S, then |
e '(p)p'*a*(p) =0,1,2,4 mod £  when p M
(iv) If H = A4 then
e p)p'*a®(p) =0,1,4 modf  when p [
(v) If H = As then

3

' 2
: 1 25
-1 1-k 2 y_ 2 1
{f (p)p" ~"a’(p) 2} =7

,g—, — mod?¢  when p J¢

o

Note: (i7) can occur only if £ > 2. (i), and (#v) can occur only if £ > 3. (v)
can occur only if £ > 5.

PROOF. (i) We know that if p N, then a(p) = p™ + p*~1=™ mod ¢, since
the only character representations of Gal(K¢/Q) into F; are powers of %,. The
general case now follows from the multiplicativity of the Fourier coefficients of
f.

(i) Let N be the normalizer of the Cartan subgroup C. The natural projection
map vy : G — N/C= Z/2Z yields the following commutative diagram:



~
Gal(K./Q) —» G—Z/2Z
! /
Gal(K*/Q)=2Z;.
The only nontrivial homomorphism of Z; to Z/2Z is the one whose kernel con-
sists of the squares of Z;. Any element o € Gal(K,/Q) with g¢(a) ¢ C in-

terchanges the associated eigenspaces. Using the eigenspaces associated with C
over Fy2, we see that p,(«) has the form:

23

If p /4N then g (Frob(p)) € C if and only if p is a quadratic residue mod 2.
Hence if p is a quadratic nonresidue mod £ it follows that:

tr(pe(Frob(p)) = a(p) =0 mod L.

(447), (1v) These congruences are identical to the type 3 congruence given by
 Swinnerton-Dyer. The proof of this congruence follows from the fact that an
element of S4 has order 1,2,3 or 4 and that an element of A4 has order 1,2 or
3. Hence the eigenvalues of g,(Frob(p)) can be determined, and the trace and
determinant of g;(Frob(p)) give the desired congruence.
. For details see [SW]. ‘

(v) For this congruence we need only to consider the element of order 5 in
As. Suppose that A is an element of order five in PGL2(F;) and let A” be a
representative of A4 in GL2(Fy). Then

det((A")°) € (F})*,

and it follows that there is a representative A’ for A with det(A’) = 1 whose
characteristic polynomial divides t* +t3 + t? + ¢t + 1. This polynomial factors in
Fpz2 as (t2 + at + 1)(t2 + bt + 1) with a = %g and b = -1—‘*’2ﬁ The congruence
now follows by relating the trace and determinant. [

The methods which constructed the congruences above also define congruences
for level N forms. Some of these congruences are contained in the following
theorem. ‘

THEOREM 3.3. Let f be a modular form of type (k,€) on T'o(N) satisfying a)
and b). If € is an exceptional prime for f then let G = j(Gal(Q/Q) and let H
be the tmage of G in PGLy(Fy).

(it) If G C the normalizer of a Cartan subgroup butl not in the Cartan subgroup
itself, then

a(p) =0 mod ¢ for aset of primes with density > 1/2.
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(ii1) If H = Sy then
e '(p)p'*a’(p) =0,1,2,4 modf  when p JEN.
(iv) If H= Ay then
e '(p)p' " (p) =0,1,4 modf  when P VEN.
(v) If H = As then
{e‘l(p)pl'ka:’(p)—g} E%,g,g,? mod £ when p [¢N.

4. Modular forms of level N mod ¢

In [SD], Swinnerton-Dyer proved that there are only finitely many excep-
tional primes £ for a given f by studying modular forms mod ¢. Here we state
results of Katz [Ka] and Sturm [St] which are used in proving congruences. In
particular, emphasis will be placed on the Ramanujan f-operator, a function on
formal power series.

DEFINITION 4.1. Given a formal power series 2_a(n)q™, the Ramanujan 8-
operalor is defined to be the map which acts on formal power series in the fol-
lowing way:

0 : Za(n)q" — \:na(n)q"

DEFINITION 4.2. Fiz a prime ¢ > 5 with £ J N. Define Mi(N) to be the
subset of modular forms of weight k on T'o(N) whose Fourier coefficients at ico
are £-integral.

DEFINITION 4.3. We define My(N) to be:

Mk(N) = {f = Z&(n)q" | f= Za(n)q" € Mk(N)}
REMARK 4.1. If ¢ > 5 is a prime and k is an integer then:
Mi(N) C Miper(N).

DEFINITION 4.4. Given f € Mk(N), define the filtration of f, denoted w(f),
to be: :

w(f)=inf {i| f e i)}
THEOREM 4.1. (Katz) i )
The Ramanujan 0-operator maps M(N) — Mite41(N). In fact,
w(O(f) Sw(f)+e+1
with equality if and only z'fw(f) Z 0 mod ¢.



DEFINITION 4.5. Let £ be a prime.‘ Let f be a formal power series
f=ZXa(n)q" with rational integer coefficients. The Ordy(f) is defined by:

Orde(f) =inf{n| € Ja(n)}

THEOREM 4.2. (Sturm)

Let f and g be modular forms of weight k on T whereT contains a principal
congruence subgroup ['(N) for some N. If f and g have integer Fourier coeffi-
cients and there ezists a prime £ such that

Ordy(f —g) > k[[(1):I]/12
then Ordy(f —g) = co. (i.e. f=g mod £).

5. Examples

ExXAMPLE 5.1. In this discussion we shall assume that f is a normalized
simultaneous eigenform of type (k, ¢) on I'o(N). For notational purposes we take
f = Xa(n)q". Note that the congruences given in Theorem 2 only pertain to
those coefficients a(n) when (n,¢N) = 1.

We can retrieve some congruences for those Fourier coefficients whose indices
are not relatively prime to the level N. Let p be a prime dividing the level N.
The eigenvalue of f with respect tc the Hecke operator T, 1s easily shown to
be a(p). Since ¢(p) = 0 we know then that the Fourier coefficients of f satisfy .
a(pn) = a(p)a(n). So a congruence satisfied by a(p), provides congruences for
a(pn).

The space of cusp forms on I'g(5) of weight 4 is one dimensional. Using the
theory developed by Newman and Gordon [Go] we see that a basis for this space
is n*(r)n*(57).

(T (57) = ¢—4¢> + 2% + 8¢ —5¢° —8¢° . ..

Since a(h) = -5 we see then that a(5n) =0 mod 5 for all n.

EXAMPLE 5.2. In this example we consider 5'2(27). This form is the unique
normalized cuspform of weight 6 on [g(4). The first few terms of its Fourier
expansion are:

n'2(27) = ¢ — 12¢® + 54¢° + 88¢7 — 99" + 540¢'" — 418¢"® — 648¢"® + 504417 .

By observation it appears that this form satisfies a type (i7) congruence; the

first few terrns satisfy a(n) =0 mod 11 when ({31-) = -1. Notice that we do not

worry about those Fourier coefficients with even indices because a(2n) = 0 for
all n. Let f(7) = 5'%(27). Consider the equation '

()f — 0(!’.-}-1)/2}7.
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If a form f satisfies this equation then we formally have:
Yna(n)q” = En(l“)/za(n)q" mod ¢.

It follows that a(n) = a(n')n(e“l)/2 mod £ if £ fn and it follows that
n
a(n) =0 mod¢ when (Z) =-1.

Proving this last equation proves the type (ii) congruence.

Here we choose ¢ = 1. By Katz’s Theorem it is known that Hf € M13(4) and
8°f € M78(4). By Remark 4 we know that M18(4) C M+g(4). Sturm’s Theorem
indicates that we only need to show that-

na(n) = n®a(n) mod 11

Cfor n = 1,2,3...39. Recall that [[(1) : To(N)] = NI, ~n(1+ 1/p). These
congruences are indeed satisfied for n = 1,2, 3,...39 thus verifying our Type (ii)
congruence.

There are several other examples of type (ii) congruences which are proven
using the same techniques. Here are other examples of Type (47) congruences.

1. 98(37) satisfies a(n)= 0 mod 5 if (3) = -1

2. 73(37) satisfies a(n)= 0 mod 7 if (2) = -1.

EXAMPLE 5.3. In this example we verify a Type (ii) equality involving the
cusp form 7°(7)53(77) on To(7). This form is the unique cusp form of weight 3
and character ¢(d) = (Z7) on I'y(7). ,

Let Xa(n)g™ be the Fourier expansion of this form at 100. The following Type

(%) equality occurs.
a(n)=0 if (1}) =1
7

This equality follows from the Jacobi product formula:

(e8]} [e o}
=0 = 3 (=0 @n 4 1greror
n=1 ) n=0
The equality follows from the fact ‘that n(n+1) =0,2,50r6 mod 7. For all
£ # 7, experimental evidence suggests that the projective image of the Deligne-

Serre representation is dihedral.

EXAMPLE 5.4. Now [ want to suggest a Type (7ii) congruence. Again we will
consider the form 7)!?(27), the unique normalized eigenform of weight 6 on ['y(4).
Basil Gordon has found that the following congruence holds for the first fourteen
hundred primes:

az(p)p‘5 =0,1,20r4 mod 19.

Although this congruence is undoubtedly true, I have no proof of it.



This congruence has some interesting consequences. Consider the classical
theta function, 8(7) = ¥¢"", a modular form of weight 1/2 on T'y(4) in the sense
of Shimura. Hence given a positive integer k, §2¥(7) is a modular form of weight
k on T'y(4). If k is even then 82*(7) is a modular form with the trivial Nebentypus
character.

Consider 2(7) as a modular form of weight 6 on ['o(4). As is true with any
modular form, we can write §'2(7) as a linear combination of Eisenstein series
and cusp forms. The Eisenstein series used here are denoted by E¢,1/4(T) and
Es 1(7). The 6 in each subscript means that these Eisenstein series are weight
6 forms. ['o(4) has three inequivalent cusps, 7 = 1,1/2 and 1/4. Here Eg1/4(7)
is constructed as to vanish at 1/2 and 1 but not at 1/4. Similarly Es 1(7) is the
Eisenstein series which vanishes at 1/4 and 1/2, but not at 1.Using the methods
outlined in [Sch] it is easily verified that these Eisenstein series have the following
Fourier expansions at 100.

JRUS——— e

1 5 <m n
Egi/a(r) =4~ 3 E Z m°sgn(m)i™ | ¢

n2l m|4n

4n/m=0 mod 4

Eea(r) = -3 Z ' Z m®sgn(m) | ¢"

= m|4n
m =0 mod 4
K 4nfm = 3 mod 4 )

For completeness, here are the first few terms of the Fourier expansions of each

of these Eisenstein series.
Eg1/4(7) = 4+ 32¢> — 992¢* + 7808¢° — 33760¢% + 100032¢'° + ...
Ee (1) = —512q — 16384¢° — 124928¢° — 524288¢" — 1600512¢° + . ..

It should be noted that Eg ;,4() only contains terms with even exponents. More-
over for n odd, the coefficient of ¢" in Es 1(7) is —51205(n).
Using linear algebra it can be shown that

Ee'l(T) n E6’1/4(T)
64 4
Put 12(r) = Tria(n)q” and 9'2(27) = Sa(n)q™. For any prime p # 2, we get:

0'2(r) = 169'*(2r) -

ria(p) = 16a(p) + 8(1 + p°)



i o R it .

CONGRUENCES ON THE FOURIER COEFFICIENTS 103

by using the formula for Eg,1(7). Using the Type (¥i7) congruence we find that
r12(P)P" = 16r1a(p)(1 + p7%) + T(0° + p~5 + 2) = 0,9,17, or 18 mod 19,

With some computation, this congruence can be rewritten as:

ri2(p) — 8(1 + p°) = p*%(0,43,46) mod 19 if (I%) =1

ri2(p) — 8(1 + ps) = (—p)s/2 mod 19 if (%) = —1]

It is a well known fact that the Fourier coefficient 7,(p) of ¢" in 6°(7) is the
number of ways that n is represented as a sum of s squares [Ko]. Hence the
congruential relation above leads to an interesting arithmetic property involving
the number of ways an odd prime is represented as a sum of 12 squares.

EXAMPLE 5.5. Type (i) congruences can be constructed by using the decom-
position of integral modular forms into Eisenstein series and cusp forms. In the
last example this decomposition was demonstrated for 6'%(r). Define F(7) to
be the modular form of weight 6 on I'o(4) equal to o—l%l — 29'2(7). It is easily
verified that

0128(7-) _ 27}12(27,) — E6;1/4(T) _ ES,I(T)_

F(r) = 32 512

By the remarks made in Example 4, we have:
a(n) = os(n)

for n odd. This is an equality of Fourier coefficients.

Infinitely many Type () congruences can be constructed using this equality.
F(7) is £-integral for all primes £ # 2. We may use the theory developed by Katz
[K] to produce infiinitely many Type (i) congruences. Given any £ > 5 and any
positive integer m we know there exists a modular form Fy ,, € M5+m(¢+1)(4)
such that

0™ (F) = Fym mod ¢.

- Let Fy p, = Yagm(n)g™ for notational convenience. If n is odd then the following

Type (i) congruence holds:

agm(n) = n"os5(n) mod £

EXAMPLE 5.6. Here an explicit Type (iv) congruence is demonstrated. In
1952, van der Blij explicitly described the behavior of n(7)1n(237) [vdB]. This eta

product is an eigenform of weight 1 on T'y(23) with Nebentypus character :(,2—3)



Denote its Fourier expansion at ico by n(T)n(237) = Ta(n)q™. The results of van

der Bljj include:
. 14
= fl= = —1
a(lp)=0 i (23)

o[ P
=—lor2 —] =1
a(p) or if (23)

The expression occurring in the congruence is ¢~ !(p)a?(p). By Quadratic Reci-
procity it follows that for all primes p we have:

T = (L)) = 0,1, 0rs

So n(7)7(237) satisfies the Type (7v) congruence for all primes ¢.
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