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Abstract. If E is an elliptic curve over Q, then let E(D) denote the D−quadratic

twist of E. It is conjectured that there are infinitely many primes p for which E(p)
has rank 0, and that there are infinitely many primes ` for which E(`) has positive

rank. For some special curves E we show that there is a set S of primes p with

density 1
3

for which if D =
Q

pj is a squarefree integer where pj ∈ S, then E(D) has

rank 0. In particular E(p) has rank 0 for every p ∈ S. As an example let E1 denote

the curve
E1 : y2 = x3 + 44x2 − 19360x + 1682384.

Then its associated set of primes S1 consists of the prime 11 and the primes p for

which the order of the reduction of X0(11) modulo p is odd. To obtain the general
result we show for primes p ∈ S that the rational factor of L(E(p), 1) is nonzero

which implies that E(p) has rank 0. These special values are related to surjective

Z/2Z Galois representations that are attached to modular forms. Another example
of this result is given, and we conclude with some remarks regarding the existence of

positive rank prime twists via polynomial identities.

1. Introduction

Let E be an elliptic curve over Q with the given Weierstrass equation

(1) E : y2 = x3 + ax2 + bx+ c,

where a, b and c are integers. In this paper all curves and their points are assumed to
be Q−rational. If D is a squarefree integer, then let E(D) denote the D−quadratic
twist of E that is given by

(2) E(D) : y2 = x3 + aDx2 + bD2x+ cD3.

Recently there have been a number of investigations regarding the distribution of
ranks of elliptic curves in various families. For instance one may consult the works
of Brumer-McGuiness, Goldfeld, Gouvêa-Mazur, Lieman, Mestre, Mai-Murty, Ono,
and Stewart-Top [2,3,8,9,14,15,16,17,19,25].

In this paper we examine the following conjecture that was brought to the au-
thor’s attention by J. Silverman.
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Conjecture. If E is an elliptic curve, then there are infinitely many primes p for
which E(p) has rank 0, and there are infinitely many primes ` for which E(`) has
positive rank.

In this direction there are a number of results deduced from an analysis of
2−descents (see [22]) that confirm part of this conjecture for the congruent number
curve

E′ : y2 = x3 − x.

For instance it is known that if p ≡ 3 (mod 8) is prime, then E′(p) has rank 0. As
another example if p ≡ 5 (mod 8) is prime, then E′(2p) has rank 0.

2. New examples

Using a completely different method we prove part of this conjecture for certain
special elliptic curves. For these curves we show that there are infinitely many
primes p for which E(p) has rank 0, and we also obtain a surprising multiplicative
property. We show the existence of a set S of primes p with density 1

3 with the
special property that if D =

∏
j pj is a squarefree integer where pj ∈ S, then E(D)

has rank 0.
In the case of the congruent number curve E′, there are similar results for integers

with few prime factors. For instance, again using a careful analysis of 2−descents
[22], it is known that E′

pqr has rank 0 if p, q, and r are primes satisfying

p ≡ 1 (mod 8), q ≡ 3 (mod 8), r ≡ 3 (mod 8), and
(
p

q

)
= −

(
p

r

)
.

We recall some essential facts. Throughout this note we let q denote the uni-
formizing variable q := e2πiz where Im(z) > 0, and all integer weight newforms
will be normalized eigenforms of all the Hecke operators. For every integer weight
newform f(z) =

∑∞
n=1 a(n)qn ∈ Sk(N,χ) with rational integer coefficients, there

exists a Galois representation ρf (see [6,7])

ρf : Gal(Q/Q) → GL2(Z/2Z)

with the property that if p - 2N is prime, then

tr(ρf (Frobp)) ≡ a(p) (mod 2).

We shall make use of such representations.
We also make use of Shimura’s theory of half-integral weight modular forms, a

theory that we now briefly describe (see [23]). Let N be a positive integer that is
divisible by 4 and define

(
c
d

)
and εd by(
c

d

)
:=

{
−
(

c
|d|
)

if c, d < 0(
c
|d|
)

otherwise.

εd :=
{

1 d ≡ 1 mod 4
i d ≡ 3 mod 4.
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Also let (cz+d)
1
2 be the principal square root of (cz+d) (i.e. with positive imaginary

part). Let χ be a Dirichlet character modulo N. Then a meromorphic function g(z)
on H = {Im(z) > 0} is called a half integer weight modular form with Nebentypus
χ and weight λ+ 1

2 if

g

(
az + b

cz + d

)
= χ(d)

(
c

d

)2λ+1

ε−1−2λ
d (cz + d)λ+ 1

2 g(z)

for all
(
a b
c d

)
∈ Γ0(N). The set of all such forms that are holomorphic on H

as well as at the cusps is denoted by Mλ+ 1
2
(N,χ) and forms a finite dimensional

C−vector space. The subspace of those g(z) in Mλ+ 1
2
(N,χ) that also vanish at the

cusps, the cusp forms, is denoted by Sλ+ 1
2
(N,χ).

As in the case integer weight forms, there are Hecke operators that preserve
Mλ+ 1

2
(N,χ) and Sλ+ 1

2
(N,χ). However for these forms the Hecke operators act on

Fourier expansions in square towers; specifically if p - N is a prime, then the Hecke
operator Tp2 acts on g(z) =

∑∞
n=1 b(n)qn ∈Mλ+ 1

2
(N,χ) by

g(z) | Tp2 :=
∞∑

n=0

(b(p2n) + χ(p)
(

(−1)λn

p

)
pλ−1b(n) + χ(p2)p2λ−1b(n/p2))qn.

As in the integer weight case, a form g(z) is called an eigenform if for every prime
p there exists a complex number λp such that

g(z) | Tp2 = λpg(z).

The connection between half integer weight forms and the integer weight modular
forms are the Shimura lifts, a family of maps which takes the L−function of a half
integer weight cusp form and returns the L-function of an integer weight modular
form. More precisely let g(z) =

∑∞
n=1 b(n)qn ∈ Sλ+ 1

2
(N,χ) where λ ≥ 1. Let t

be a positive square-free integer and define the Dirichlet character ψt by ψt(n) =
χ(n)

(−1
n

)λ( t
n

)
. Now define At(n) by the formal product of L−functions

∞∑
n=1

At(n)
ns

:= L(s− λ+ 1, ψt)
∞∑

n=1

b(tn2)
ns

.

Then Shimura proved that the Mellin transform of this product, which we de-
note by SHt(g(z)) =

∑∞
n=1At(n)qn is a weight 2λ modular form in M2λ(N

2 , χ
2).

Furthermore if λ ≥ 2, then SHt(g(z)) happens to be a cusp form.
Now we define the notation that is used in Theorem 1. Let E be a modular

elliptic curve with conductor N whose Hasse-Weil L−function is given by

L(E, s) =
∞∑

n=1

A(n)
ns

.

In particular this implies that there is a weight 2 newform F (z) =
∑∞

n=1A(n)qn ∈
S2(N,χ1) where χ1 is the trivial Dirichlet character modulo N.

Now suppose that for some positive integer M there exists a cusp form g(z) =∑∞
n=1 b(n)qn ∈ S 3

2
(M,

(
d
·
)
) that is an eigenform of the Hecke operators Tp2 for

which the image of g(z) under the Shimura lift is F (z). Now let S denote the set of
primes p for which b(p) is odd. With this notation we prove the following theorem.
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Theorem 1. Using the notation above, suppose there exists an integer weight
newform f(z) =

∑∞
n=1 a(n)qn with rational integer coefficients whose residual

Z/2Z−Galois representation ρf is surjective and whose Fourier expansion satis-
fies

f(z) ≡ g(z) (mod 2).

Furthermore suppose that for every squarefree integer n2 for which b(n2) is odd
there exists a squarefree integer n1, where n1

n2
∈ Q×2

p for every prime p | M, with
the property that

L(E(−dn1), 1) · b(n1) 6= 0.

If D =
∏

j pj is a squarefree integer with pj ∈ S, then E(−dD) has rank 0. Moreover
S has density 1

3 .

Proof. From the works of Bump-Friedberg-Hoffstein, Coates-Wiles, Kolyvagin, and
Murty-Murty, Waldspurger’s theorem [26] implies the following theorem.

Theorem. Let E′ be a modular elliptic curve over Q with L(E′, s) =
∑∞

n=1
A(n)
ns .

Let g(z) =
∑∞

n=1 b(n)qn ∈ S 3
2
(M,

(
d
·
)
) be an eigenform of the Hecke operators Tp2

such that SH1(g(z)) = F (z) =
∑∞

n=1A(n)qn. Now let Let n1 be a positive squarefree
integer such that b(n1) 6= 0 and such that L(E′

−dn1
, 1) 6= 0. Suppose that n2 is a

positive squarefree integer such that n1
n2

∈ Q×2
p for every prime p |M. If b(n2) 6= 0,

then the rank of E′
−dn2

is unconditionally 0.

With this theorem, if p ∈ S, then since b(p) ≡ a(p) (mod 2) is odd (hence is
non-zero), it follows that E(−dp) has rank 0. Moreover by multiplicativity of the
Fourier coefficients of newforms, it follows that

a(m)a(n) = a(mn)

if gcd(m,n) = 1. Therefore we find that if D =
∏

i pi is a squarefree integer where
pi ∈ S, then a(D) ≡ b(D) ≡ 1 (mod 2) and hence E(−dD) has rank 0.

To complete the proof we need to establish that S has density 1
3 . Since a(n) ≡

b(n) (mod 2) for all n, we simply need to examine the coefficients a(p) when p is
prime. The Galois representation ρf

ρf : Gal(Q/Q) → GL2(Z/2Z)

has the property that

tr(ρf (Frobp)) ≡ a(p) (mod 2)

for all but finitely many primes. However GL2(Z/2Z) = PGL2(Z/2Z) is isomorphic
to S3, and since ρf is surjective, we find by Chebotarev’s density theorem that the
set of primes p for which tr(ρf (Frobp)) ≡ 1 (mod 2), those primes where the image
has order 3, has density 1

3 .

�
Before we give some immediate corollaries, we should mention that it is not apparent
how often the above theorem applies. Although it is true that this theorem is easy
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to apply in practice, it is not clear how often the hypotheses of the theorem are
satisfied. The author is inclined to believe that this phenomenon is very common,
but he does not see how to quantify this assertion.

Before we mention corollaries, we define some relevant partition functions that
are similar to those that have occurred in other settings [1]. Let e1(n) (resp. e2(n))
denote the number of two colored partitions of n into an even number of parts
where the parts of the first color are distinct even integers (resp. multiples of 6)
and the parts of the second color are distinct multiples of 22 (resp. 18). Similarly
let o1(n) (resp. o2(n)) denote the number of two colored partitions of n into an odd
number of parts where the parts of the first color are distinct even integers (resp.
multiples of 6) and the parts of the second color are distinct multiples of 22 (resp.
18). Define the two partition functions a1(n) and a2(n) by

a1(n) := e1(n− 1)− o1(n− 1)

a2(n) := e2(n− 1)− o2(n− 1).

The generating functions for a1(n) are a2(n) are

∞∑
n=1

a1(n)qn = q
∞∏

n=1

(1− q2n)(1− q22n)

∞∑
n=1

a2(n)qn = q
∞∏

n=1

(1− q6n)(1− q18n).(3)

Recalling that Dedekind’s eta function η(z) is a weight 1
2 cusp form given by the

infinite product

η(z) := q
1
24

∞∏
n=1

(1− qn),

we find that

η(2z)η(22z) =
∞∑

n=1

a1(n)qn

η(6z)η(18z) =
∞∑

n=1

a2(n)qn.

Corollary 1. Let E1 denote the elliptic curve given by

E1 : y2 = x3 + 44x2 − 19360x+ 168234.

If D is a squarefree integer for which a1(D) is odd, then E1(D) has rank 0. Moreover
the set S1 of primes p for which a1(p) is odd has density 1

3 .

Proof. It turns out that the modular form f(z) = η(2z)η(22z) ∈ S1(44,
(−11

·
)
) is a

newform. Therefore it follows from the theory of Hecke operators that if m and n
are relatively prime positive integers, then

(4) a1(m)a1(n) = a1(mn).
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By Euler’s Pentagonal number theorem we find that

η(2z)η(22z) =
∞∑

n=1

a1(n)qn = q

(∑
k∈Z

(−1)kq3k2+k

)
·

∑
j∈Z

(−1)jq33j2+11j

 .

As a consequence we find that a1(n) = 0 if n ≡ 2, 6, 7, 8, 10 (mod 11). Therefore
the Galois representation ρf attached to η(2z)η(22z) satisfies

tr(ρf (Frobp)) ≡ a1(p) ≡ 0 (mod 2).

for at least half the primes. Therefore since the image of ρf is a subgroup of S3, by
the Chebotarev density theorem the representation ρf is surjective if there exists a
single odd prime p 6= 11 for which a1(p) is odd. Since a1(5) is odd, it follows that
ρ2 is surjective and the set of primes p for which a1(p) is odd has density 1

3 .

Now define the weight 3
2 cusp form g(z) by

(5)

g(z) :=
∞∑

n=1

b1(n)qn = f(z)Θ(z) =

( ∞∑
n=1

a1(n)qn

)
·
(
1 + 2q + 2q4 + 2q9 + . . .

)
.

By (5) we find that a1(n) ≡ b1(n) (mod 2) for all n. Moreover g(z) is an eigenform
of the Hecke operators Tp2 and its image of under the Shimura correspondence is
F (z) =

∑∞
n=1A(n)qn = η2(z)η2(11z) which is a newform in S2(11, χ1) where χ1 is

the trivial character. Therefore it follows that the Hasse-Weil L−function of X0(11)
is given by

L(X0(11), s) =
∞∑

n=1

A(n)
ns

.

One can easily verify that E1 is the −11−quadratic twist of the elliptic curve
X0(11) given by

y2 + y = x3 − x2 − 10x− 20.

By the multiplicativity of a1(n), it follows that if m and n are relatively prime
positive integers for which b1(m) and b1(n) are odd, then b1(mn) is also odd.
Therefore with a little computation this completes the proof of the corollary.

�

Corollary 2. Let E2 denote the elliptic curve given by

E2 : y2 = x3 − 432.

If D > 1 is a squarefree integer for which a2(D) is odd, then E2(D) has no nontrivial
rational points. Moreover the set S2 of primes p for which a2(p) is odd has density
1
3 .

Proof. This proof is similar to the proof of Corollary 1. It turns out that f(z) =
η(6z)η(18z) =

∑∞
n=1 a2(n)qn ∈ S1(108,

(−3
·
)
) is a newform. The representation ρf

is also surjective following a similar argument to the one given in Corollary 1.
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The weight 3
2 cusp form g(z) ∈ S 3

2
(108,

(
3
·
)
) defined by

g(z) :=
∞∑

n=1

b2(n)qn = η(6z)η(18z)Θ(z) =

( ∞∑
n=1

a2(n)qn

)
·
(
1 + 2q + 2q4 + . . .

)
is almost an eigenform of the Hecke operators. If g0(z) := g(z) |T25 = 6q2 + 6q5 −
6q8 − . . . , then G(z) := g(z) − 1

3g0(z) is an eigenform of all the Hecke operators
and its its image under the Shimura lift is η2(3z)η2(9z), a weight 2 newform in
S2(27, χ1). Fortunately it turns out that g0(z) ≡ 0 (mod 6), and so G(z) ≡ g(z)
(mod 2). As in the proof of Corollary 1, we find that a2(n) ≡ b2(n) (mod 2) for all
n. However if η2(3z)η2(9z) =

∑∞
n=1A(n)qn, then

L(E, s) =
∞∑

n=1

A(n)
ns

where E can be taken to be the CM elliptic curve with conductor 27 given by

E : y2 = x3 + 16.

It is easy to verify that E2 is the −3−quadratic twist of E. As in Corollary 1,
one may check that the hypotheses in Theorem 1 are satisfied; therefore if D is a
squarefree integer for which a2(D) is odd, then b2(D) is odd and E(−3D) = E2(D)
has rank 0. Since it is well known that for all such D > 1, the torsion group is
trivial, the result now follows.

�
We now mention the following interesting corollary that gives an elliptic curve

description of the sets S1 and S2. If E is an elliptic curve and p is a prime, then let
|E(Z/pZ)| denote the number of rational points of the reduction of E modulo p.

Corollary 3. The sets of primes S1 and S2 satisfy

S1 = {11} ∪ {primes p where |X0(11)(Z/pZ)| is odd}
S2 = {primes p where |E(Z/pZ)| is odd}

where E is the elliptic curve given by

E : y2 = x3 + 16.

Proof. By the fact that (1−Xn)2 ≡ (1−X2n) (mod 2), we find that

η(2z)η(22z) =
∞∑

n=1

a1(n)qn ≡ η2(z)η2(11z) (mod 2)

η(6z)η(18z) =
∞∑

n=1

a2(n)qn ≡ η2(3z)η2(9z) (mod 2).
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Recall from the proofs of Corollaries 1 and 2 that η2(z)η2(11z) and η2(3z)η2(9z)
are the Mellin transforms of L(X0(11), s) and L(E, s) respectively.

If p is a prime for which X0(11) has good reduction, then

a1(p) ≡ p+ 1− |X0(11)(Z/pZ)| (mod 2).

Hence if p is a prime for which X0(11) has good reduction, then p ∈ S1, if and only
if |X0(11)(Z/pZ)| is odd. Since X0(11) only has bad reduction at p = 11, a brief
computation shows that 11 is also in S1. Exactly the same argument holds for S2.

�

Remark 1. By the theory of lacunary modular forms, it follows that the set of
positive integers for which ai(n) = 0 has arithmetic density 1.

Remark 2. If D =
∏

j pj is a square-free integer where pj ∈ Si, then assuming
the conjecture of Birch and Swinnerton Dyer it can be shown that the order of the
Tate-Shafarevich group of Ei(D) is, up to small scalar factors, (coming from the
local Tamagawa numbers) b2i (D). Since the bi(D) are themselves values of special
partition functions, is there a combinatorial realization of elements of the Tate-
Shafarevich groups of these twists analogous to the combinatorial realizations of
certain ideal class groups in [20]?

Remark 3. The methods used here also will give nonvanishing quadratic twists of
more generic modular L−functions at the central critical value.

3. Further remarks

In this section we make some remarks concerning prime twists of elliptic curves.
First we recall the following conjecture of Bouniakowsky [21].

Bouniakowsky’s Conjecture. Let F (x) be an irreducible polynomial over Q
with integer coefficients for which the only positive integer n dividing all F (k) for
every integer k is n = 1. Then there exist infinitely many positive integers m for
which F (m) is prime.

As a consequence of this conjecture we obtain:

Theorem 2. Let E be an elliptic curve given by the Weierstrass equation

E : y2 = x3 + ax2 + bx+ c

where a, b, and c are integers that do not satisfy both

a+ b ≡ 1 (mod 2),

a ≡ c ≡ 0 (mod 3) and b ≡ 2 (mod 3).

Assuming Bouniakowsky’s conjecture, if E is an elliptic curve with no rational
points of order 2, then there exists infinitely many primes p for which E(p) has
positive rank.
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Proof. If we define polynomials X(u), Y (u),and D(u) by

X(u) := u4 − 2bu2 − 8cu+ (b2 − 4ac),

Y (u) := u6 + 2au5 + 5bu4 + 20cu3 − 5(b2 − 4ac)u2+

+ (8a2c− 2ab2 − 4bc)u− (b3 − 4abc+ 8c2)

D(u) := 4(u3 + au2 + bu+ c),

then we find that

Y 2(u) = X3(u) + aD(u)X2 + bD2(u)X + cD3(u).

This identity is a special case of Legendre’s identity that is the topic in [10]. There-
fore for every integer u the point (X(u), Y (u)) lies on E(D(u)). By Bouniakowsky’s
conjecture there exists infinitely many positive integers u for which D(u)

4 is prime.
Since E(D(u)) is isomorphic to E(D(u)

4 ) over Q, it suffices to show that for all
but finitely many integers u that the point (X(u), Y (u)) has infinite order. How-
ever by Mazur’s theorem, if (X(u), Y (u)) has finite order, then its order must
be 2, 3, 4, . . . 9, 10 or 12. However by the doubling formulas if this point has finite
order, then the polynomials X(u) and Y (u) must satisfy a finite number of poly-
nomial equations. Therefore there are at most finitely many integers u for which
(X(u), Y (u)) has finite order.

�
Assuming a reformulation of Bouniakowsky’s conjecture, one can deduce that

there are infinitely many primes p for which E(p) has positive rank. However since
his conjecture seems well beyond current techniques it does not seem reasonable to
do so.

It is interesting to note that the strongest results in the direction of Bouniakow-
shy’s conjecture imply the existence of infinitely many positive rank cubic twists of
certain elliptic curves where the twisting factor is at most a product of two primes.
Assuming the conjectures of Birch and Swinnerton Dyer, it is known that there are
infinitely many primes p for which p−cubic twists of certain elliptic curves have
positive rank. If c is a non-zero integer, then let E′

c denote the elliptic curve with
complex multiplication by Q(

√
−3) defined by

(6) E′
c : y2 = x3 + c.

If D is a cube free integer, then the cubic twist of E′
c is E′

D2c and is given by

y2 = x3 + cD2.

Theorem 3. If c is an odd integer that is not a perfect square, then there exists
infinitely many integers D that are at most the product of two primes for which
E′

cD2 has positive rank.

Proof. If D(u) := u2 − c, then it turns out that the point (D(u), uD(u)) is a point
on the elliptic curve E′

cD2(u), the D(u)−cubic twist of the elliptic curve E′
c.

By Iwaniec’s theorem [11] since D(u) is irreducible over Q and c is odd, there
are infinitely many integers u for which D(u) is at most the product of two primes.
By the same argument that appeared in the proof of Theorem 2, there are at most
finitely many integers u for which the point (D(u), uD(u)) has finite order.

�
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