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1. Introduction and Statement of Results

If k is a positive integer, let Sk(N) denote the space of cusp forms of weight k on
Γ1(N), and let Scm

k (N) denote the subspace of Sk(N) spanned by those forms having
complex multiplication (see [Ri]). For a non-negative integer k and any positive integer
N ≡ 0 (mod 4), let Mk+ 1

2
(N) (resp. Sk+ 1

2
(N)) denote the space of modular forms

(resp. cusp forms) of half-integral weight k + 1
2 on Γ1(N). Similarly, if k ∈ 1

2N, then let
Mk(N,χ) (resp. Sk(N,χ)) denote the space of modular (resp. cusp) forms with respect
to Γ0(N) and Nebentypus character χ. Throughout this note we shall refer to classical
facts which may be found in [Ko, Mi, S-S, Sh].

If i = 0 or 1, 0 ≤ r < t, and a ≥ 1, then let θa,i,r,t(z) denote the Shimura theta
function

(1) θa,i,r,t(z) :=
∑

n≡r (mod t)

niqan2

(Note: q := e2πiz throughout). Each θa,i,r,t(z) is a holomorphic modular form of weight
i+ 1

2 . If Θ(N) is the set of modular forms generated by such functions of level dividing
N, then the Serre-Stark Theorem [S-S] implies

(2) Θ(N) = M 1
2
(N) ∪

{
subspace of M 3

2
(N) spanned by those θa,1,r,t(z) on Γ1(N)

}
.
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If g(z) ∈ Mk+ 1
2
(N1) and h(z) ∈ Θ(N2), then let gh(n) denote the Fourier coefficient of

qn of the modular form

g(z) · h(z) =
∞∑

n=0

gh(n)qn.

Moreover, let Gh(z) denote the modular form

(3) Gh(z) :=
∑

gcd(n,N1N2)=1

gh(n)qn.

It follows from [Lemma 4, S-S] that Gh(z) is a modular form on Γ1(N2
1N

2
2 ) of integral

weight k + 1 or k + 2.

Definition. A modular form g(z) ∈Mk+ 1
2
(N1) is good if there is an integer N2 and a

function h(z) ∈ Θ(N2) for which

(i) Gh(z) is a nonzero cusp form.

(ii) Gh(z) 6∈ Scm
k+1(N

2
1N

2
2 ) ∪ Scm

k+2(N
2
1N

2
2 ).

There have been a number of recent papers on the non-vanishing of Fourier coefficients
of half-integral weight modular forms modulo primes ` (see [B2, J, O-S1]), and in this
direction the first author and C. Skinner were able to prove the following theorem for
“good” forms.

Theorem. [p. 454, O-S1] Let g(z) =
∑∞

n=0 c(n)qn ∈ Mk+ 1
2
(N) be an eigenform whose

coefficients are algebraic integers. If g(z) is good, then for all but finitely many primes `
there are infinitely many square-free integers m for which |c(m)|` = 1.

Here | • |` denotes an extension of the usual `-adic valuation to an algebraic closure of Q.

In [O-S1], the first author and Skinner made the following natural conjecture:

The “Good” Conjecture. [p. 468, O-S1] Every form in Mk+ 1
2
(N)\ Θ(N) is good.

In this note we prove:

Theorem 1. The “Good” Conjecture is true.

In a recent preprint, W. McGraw [M] obtains another proof of Theorem 1.
To prove the conjecture, we employ a well known result of M.-F. Vignéras, the Fun-

damental Lemma from [pp. 653-654, O-S2], and Brun’s sieve.
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2. Proof of Theorem 1

Here we begin by recalling a well-known result due to M.-F. Vignéras [V] (see [B1] for
a new elementary proof).

Theorem 2. [Th. 3, V] Suppose that f(z) =
∑∞

n=0 a(n)qn is in Mk+ 1
2
(N). If there are

finitely many square-free integers d1, d2, . . . , dj such that a(n) = 0 for every n not of the
form dim

2 with 1 ≤ i ≤ j and m ∈ Z+, then f(z) ∈ Θ(N)

We begin by combining Theorem 2 and [Fund. Lemma, pp. 653-654, O-S2] to
obtain a lower bound for the number of non-zero coefficients of any modular form
f(z) ∈Mk+ 1

2
(N,χ)\Θ(N).

Theorem 3. Suppose that f(z) =
∑∞

n=0 a(n)qn is a modular form in Mk+ 1
2
(N,χ)\Θ(N).

If f(z) is an eigenform of the Hecke operators T (p2) for every prime p - N , then

#{n ≤ X : a(n) 6= 0} �f
X

logX
.

Proof. By [Lemma 8, S-S], we may assume that all of the Fourier coefficients a(n) and
the eigenvalues of the Hecke operators T (p2), for primes p - N , are algebraic integers in
a fixed number field K. Let v be a place in K over 2.

By Theorem 2 there are infinitely many square-free positive integers d1 < d2 < . . .
for which there are positive integers n with a(din

2) 6= 0. Let s0 be the smallest integer
for which there is a square-free integer d > 1, with d - N , and a positive integer n for
which ordv(a(dn2)) = s0. Moreover, let d0 be such a d and let n0 be a positive integer
for which ordv(a(d0n

2
0)) = s0. Since d0 - N , there are square-free integers D0 > 1 and

D1 for which d0 = D0D1 and D1 | N and gcd(D0, N) = 1. Similarly, let m0 and m1

denote the unique positive integers for which n0 = m0m1, gcd(m0, N) = 1, and every
prime p | m1 also divides N .

Now recall the action of the Hecke operators. If p is prime, then

(4) f(z) | T (p2) :=
∞∑

n=0

(
a(p2n) + χ(p)

(
(−1)kn

p

)
pk−1a(n) + χ(p2)p2k−1a(n/p2)

)
qn.

Suppose that d is a positive integer and p - N is a prime for which p2 - d. Since f(z) is
an eigenform, it is easy to see that a(d) | a(dp2i). As a consequence, it turns out that
a(D0D1m

2
1) 6= 0 and ordv(a(D0D1m

2
1)) = s0.

If p | N is prime, then by [Lemma 1, S-S] it is known that

(5) f(z) | U(p) =
∞∑

n=0

a(pn)qn
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is a cusp form in Mk+ 1
2
(N,χ ·

(
4p
•
)
). Therefore, if j is any positive integer for which every

prime p | j also divides N , then f(z) | U(j) =
∑∞

n=0 a(jn)qn ∈ Mk+ 1
2
(N,χ ·

(
4j
•
)
). Now

define f0(z) ∈Mk+ 1
2
(N,χ ·

(
4D1
•
)
) by

f0(z) =
∞∑

n=0

b(n)qn := f(z) | U(D1m
2
1) =

∞∑
n=0

a(D1m
2
1n)qn.

By construction, we have that b(D0) = a(D0D1m
2
1) 6= 0 and ordv(b(D0)) = s0.

Also by construction, if there is an integer s < s0 and an integer n for which
ordv(b(n)) = s, then gcd(n,N) 6= 1. This follows from the minimality of s0. If this
is the case, then define f1(z) ∈Mk+ 1

2
(N2, χ ·

(
4D1
•
)
) (see [Lemma 4, S-S]) by

(6) f1(z) =
∞∑

n=1

c(n)qn :=
∑

gcd(n,N)=1

b(n)qn.

If there is no such s, then let f1(z) =
∑∞

n=0 c(n)qn := f0(z).
In either case, f1(z) =

∑∞
n=0 c(n)qn is in Mk+ 1

2
(N2, χ ·

(
4D1
•
)
) and has the property

that s0 is indeed the smallest integer for which there is an n with ordv(c(n)) = s0.
Moreover, the square-free integer D0 which is coprime to N2 is such an n. By the
Fundamental Lemma [pp. 653-654, O-S2], if f1(z) is a cusp form, then

#{n ≤ X : gcd(n,N2) = 1 and a(D1m
2
1n) = c(n) 6= 0} �f1

X

logX
.

Although the Fundamental Lemma is stated for eigenforms which are cusp forms, it is
easy to modify the argument to apply to forms f1(z) which are not cuspidal. Following
the proof of the Fundamental Lemma, consider the integer weight form

F (z) := f1(z) ·

(
1 + 2

∞∑
n=1

qn2

)
,

and decompose it into a cusp form C(z) and a linear combination of Eisenstein series
E(z). By construction, the coefficient of qD0 in F (z) has minimal 2-adic valuation s0,
and is determined by a linear combination of generalized divisor functions related to the
Eisenstein series in E(z) (see [Mi]) and the collection of 2-adic Galois representations
associated to the newforms constituting C(z). By Dirichlet’s Theorem on primes in
arithmetic progressions, the Chebotarev Density theorem, and the multiplicativity of the
coefficients of newforms, it follows that a ‘positive proportion’ of the square-free integers
D with the same number of prime factors as D0 have the property that the coefficient
of qD in F (z) have minimal 2-adic valuation s0. As in the proof of the Fundamental
Lemma, this implies that

#{1 ≤ n ≤ X : c(n) 6= 0} � X

logX
(log logX)r−1
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where D0 has exactly r prime factors.

Q.E.D.
As a corollary, we obtain the following result (see [O] for a similar result).

Corollary 4. If f(z) =
∑∞

n=0 a(n)qn is a modular form in Mk+ 1
2
(N,χ)\Θ(N), then

#{n ≤ X : a(n) 6= 0} �f
X

logX
.

Proof. If w =
∑∞

n=0 aw(n)qn is a formal power series in q, then define

Mw(X) := #{0 ≤ n ≤ X : aw(n) 6= 0}.

Now suppose that Mf (X) = o(X/ logX). In view of (4), it is easy to see that if p - N is
prime, then

(7) Mf |T (p2)(X) ≤Mf (p2X) + 2Mf (X).

By (7), p - N is prime, then Mf |T (p2)(X) = o(X/ logX).
If w1 and w2 are formal power series, then it is obvious that

Mw1+w2(X) ≤Mw1(X) +Mw2(X).

Therefore, if T is the Hecke algebra generated by the Hecke operators T (p2) and X = Tf ,
then for every u(z) ∈ X we have that Mu(X) = o(X/ logX).

Since T is commutative, every simple submodule of X is generated by an eigenform.
If u(z) is such an eigenform, then Theorem 3 contradicts the conclusion that Mu(X) =
o(X/ logX). Therefore, it must be that Mf (X) �f X/ logX.

Q.E.D.

Now we employ Brun’s sieve to obtain an important technical result regarding the
prime divisors of a shifted set of integers. As usual, pa||n means that a is the exact
power of p dividing n.

Lemma 5. Let ` be a fixed prime, and let 1 ≤ r < t be integers for which gcd(r, t) = 1.
If A is a set of non-negative integers for which

#{n ≤ X : n ∈ A} � X

logX
,

then there is a positive integer E and at least one integer n ∈ A with n < `E such that
p||(n+ `E) for some prime p ≡ r (mod t).



6 JORGE JIMENEZ URROZ AND KEN ONO

Proof. If φ(•) denotes the usual Euler phi-function, then define the polynomial F (n) by

(8) F (n) = (n+ `)(n+ `2) · · · (n+ `φ(t)+1).

Let AX denote the set of integers

(9) AX := {F (n) : n ≤ X}

and let PX denote the set

(10) PX := {p ≡ r (mod t) prime : log2X < p < X}.

It is easy to see that if X is sufficiently large, then every prime p ∈ PX has the property
that the multiplicative order of ` in (Z/pZ)× is larger than φ(t) + 1. Therefore, if n is
an integer and p ∈ PX is any prime for which F (n) ≡ 0 (mod p), then there is exactly
one integer 1 ≤ i ≤ φ(t) + 1 for which

(11) n+ `i ≡ 0 (mod p).

Moreover, it is obvious that if p ∈ PX , then there are φ(t) + 1 distinct residue classes n
(mod p) for which F (n) ≡ 0 (mod p).

Now we consider the function S(AX , PX , X) which is defined by

(12) S(AX , PX , X) := #{1 ≤ n ≤ X : gcd(F (n), p) = 1 for every p ∈ PX}.

By a straightforward application of Brun’s sieve method [Theorem 2.2, H-R] we find that

(13) S(AX , PX ;X) � X
∏

p∈PX

(
1− φ(t) + 1

p

)
.

Using the well known fact [p. 605, R] that∏
p≤X

p≡r (mod t)

(
1− 1

p

)
� 1

(logX)1/φ(t)
,

it is easy to deduce

(14) S(AX , PX ;X) � X

(logX)1+1/2φ(t)
.

Therefore, if X is sufficiently large, then there are integers n ∈ A with n ≤ X for
which there is at least one prime p ∈ PX with F (n) ≡ 0 (mod p). In particular, in view
of (14) we find that

(15) #{n ≤ X : n ∈ A and F (n) ≡ 0 (mod p) for some prime p ∈ PX} �
X

logX
.
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However, the number of positive integers n ≤ X which are divisible by p2 for some prime
p ∈ PX is

� X
∑

log2 X<p<X

1
p2

<
X

log2X

∑
p<X

1
p
� X

(logX)1+1/2
,

since
∑

p≤X 1/p � log logX. Therefore, by (11) and (15) we find that the number of
integers n ≤ X and n ∈ A for which there is at least one prime p ∈ PX and an integer
1 ≤ e ≤ φ(t) + 1 such that p||n+ `e is � X/ logX.

To conclude the proof, we note that if p||(n + `e), then p||(n + `E(j)) where E(j) :=
e+p(p−1)(p(p−1)+1)j and j ≥ 0. To see this, note that n+`E(j) = n+`e+(`E(j)−`e),
`p−1 ≡ 1 (mod p) and `p(p−1) ≡ 1 (mod p2). Therefore if j is sufficiently large, then
n < `E .

Q.E.D.

Proof of Theorem 1. Here we recall the essential facts regarding modular forms with
complex multiplication (see [Ri]). If φ(z) =

∑∞
n=1 aφ(n)qn ∈ Sk(N,χ) is a newform with

complex multiplication by the imaginary quadratic field K = Q(
√
d), where d is the

discriminant of K, then d | N , and if p is a prime for which
(
d
p

)
= −1, then aφ(p) = 0.

Now suppose that F (z) =
∑∞

n=1 aF (n)qn is an integer weight cusp form in Sw(N,ψ).
There are finitely many fundamental discriminants of imaginary quadratic fields, say
d1, d2, . . . , dj for which di | N . Therefore, it is easy to construct an arithmetic progression
r (mod t) with gcd(r, t) = 1 such that every prime p ≡ r (mod t) has the property that(
di

p

)
= −1 for each 1 ≤ i ≤ j. Therefore, by the multiplicativity of the Fourier coefficients

of newforms, F (z) cannot be a linear combination of forms with complex multiplication
if there is a positive integer n and a prime p ≡ r (mod t) for which p||n and aF (n) 6= 0.

Now we prove Theorem 1 by considering two different cases.

Case I. Suppose that g(z) =
∑∞

n=0 a(n)qn ∈ Mk+ 1
2
(N,χ)\Θ(N). By Corollary 4, we

know that

#{n ≤ X : a(n) 6= 0} �g
X

logX
.

Now let ` | 576N be prime, and let r mod t with gcd(r, t) = 1 be an arithmetic pro-
gression such that

(
di

p

)
= −1 for every prime p ≡ r (mod t) and every fundamental

discriminant of an imaginary quadratic field di | 576N . By Lemma 5, there exists an
integer n < `E for which a(n) 6= 0, a prime p ≡ r (mod t), and a positive integer E such
that p||n+ `E .

Now consider the cusp form g(z) ·η(24`Ez), where η(z) := q1/24
∏∞

n=1(1− qn) denotes
Dedekind’s eta-function. It is well known that η(24z) = q + · · · ∈ S1/2(576, χ12), where
χ12 is the non-trivial quadratic character with conductor 12. Obviously, η(24`Ez) ∈
Θ(576`E), and so g(z)η(24`Ez) ∈ Sk+1(576N`E). The coefficient of qn+`E

of this form
is a(n) 6= 0. Since every fundamental discriminant of an imaginary quadratic field d |
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576N`E already divides 576N , we find that g(z)η(24`Ez) cannot be a linear combination
of forms with complex multiplication (i.e. g(z) is good).

Case II. Suppose that g(z) =
∑∞

n=0 a(n)qn ∈Mk+ 1
2
(N)\Θ(N). It is well known that if

w ∈ 1
2Z, then

(16) Mw(N) = ⊕χMw(N,χ),

where the direct sum is over Dirichlet characters χ mod N . Therefore, we may decom-
pose g(z) as

g(z) =
∑

χ

αχgχ(z).

If χ is a character for which αχgχ(z) 6= 0, then by Case I there is a weight 1/2 cusp form
θ(z) ∈ S1/2(N2,Ψ) for which gχ(z)θ(z) is a weight k + 1 cusp form which is not a linear
combination of forms with complex multplication.

If χ1 and χ2 are distinct characters mod N , then gχ1(z)θ(z) and gχ2(z)θ(z) will lie
in different spaces of weight k + 1 cusp forms with Nebentypus. Therefore, it follows
immediately that g(z)θ(z) is good.

Q.E.D.
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[V] M.-F. Vignéras, Facteurs gamma et équations fonctionnelles Springer Lect. Notes in Math.
627 (1977), 79-103.
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