
NONVANISHING OF QUADRATIC TWISTS OF MODULAR

L-FUNCTIONS AND APPLICATIONS TO ELLIPTIC CURVES

Ken Ono

J. reine angew. math., 533, 2001, pages 81-97

1. Introduction and Statement of Results

If F (z) =
∑∞

n=1 a(n)qn ∈ S2k(Γ0(M), χ0) (note: q := e2πiz throughout) is a newform of
even integer weight 2k with trivial character χ0, then let L(F, s) be its L-function

L(F, s) :=
∞∑

n=1

a(n)
ns

.

If d is square-free or is a fundamental discriminant, then let χd = χD denote the Kronecker
character for the quadratic field Q(

√
d) whose fundamental discriminant is D. Throughout

D shall denote a fundamental discriminant. The D-quadratic twist of F , denoted F ⊗ χD,
is the newform corresponding to the twist of F by the character χD. In particular, if
gcd(M,D) = 1, then (F ⊗ χD)(z) =

∑∞
n=1 χD(n)a(n)qn and

L(F ⊗ χD, s) =
∞∑

n=1

χD(n)a(n)
ns

.

We establish, for those newforms satisfying a mild hypothesis, a curious multiplicative prop-
erty for many D for which L(F ⊗ χD, k) 6= 0.

Before we state our result we recall that a set of primes S is said to have Frobenius density
if there is a Galois extension K/Q with the property that those primes p ∈ S, up to finitely
many exceptions, are distinguished as those primes for which the Frob(p) constitute a fixed
conjugacy class c or a union of conjugacy classes in Gal(K/Q). By the Chebotarev Density
Theorem, a set S corresponding to a conjugacy class c has density α = #c/#Gal(K/Q).
The density for general S are defined in the obvious way.
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Theorem 1. Let F (z) =
∑∞

n=1 a(n)qn ∈ S2k(Γ0(M), χ0) be an even weight newform and
let K be a number field containing the coefficients a(n). If v is a place of K over 2 and there
is a prime p - 2M for which

(1.1) ordv(a(p)) = 0,

then there is a fundamental discriminant DF and a set of primes SF with positive Frobenius
density such that for every positive integer j we have

L(F ⊗ χp1p2···p2jDF
, k) 6= 0

whenever p1, p2, . . . , p2j ∈ SF are distinct primes not dividing DF .

It is easy to see that the choice of DF is not unique.
In an important paper [G], Goldfeld conjectured that∑

|D|≤X,
gcd(D,M)=1

ords=k(L(F ⊗ χD, s)) ∼ 1
2

∑
|D|≤X,

gcd(D,M)=1

1.

(note: The original form of this conjecture was for weight 2 newforms F (z) associated to
modular elliptic curves). Obviously, this conjecture implies the weaker conjecture that

(1.2) #{|D| ≤ X : L(F ⊗ χD, k) 6= 0 and gcd(D,M) = 1} �F X.

Recent important work by Katz and Sarnak [Ka-Sa] yields, among many other results,
conditional proofs of (1.2). Although there has been some recent success in proving (1.2)
unconditionally for exceptional F (z) (those with exceptional mod 3 Galois representations)
by the works of James, Kohnen, and Vatsal [J, Ko, V], the best unconditional lower bound
for general F is due to the author and Skinner. They established [Cor. 3, O-Sk] that

(1.3) #{|D| ≤ X : L(F ⊗ χD, k) 6= 0 and gcd(D,M) = 1} �F
X

log X
.

For most F (z) we obtain the following modest improvement to (1.3).

Corollary 2. If F (z) ∈ S2k(Γ0(M), χ0) is a newform satisfying (1.1), then

#{|D| ≤ X : L(F ⊗ χD, k) 6= 0} �F
X

log1−α X

where 0 < α < 1 is the density of SF .

Hypothesis (1.1) in Theorem 1.1 is a mild condition which is satisfied by most newforms
(there are exceptions like ∆(z)). For example, almost every weight 2 newform associated to
an elliptic curve E/Q satisfies (1.1) (for example, see [Du]).
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Suppose that E/Q is an elliptic curve

E : y2 = x3 + ax + b,

and let L(E, s) =
∑∞

n=1 aE(n)n−s be its Hasse-Weil L-function. For integers d which are
not perfect squares, let E(d) denote the d-quadratic twist of E

E(d) : dy2 = x3 + ax + b.

Moreover, if E is an elliptic curve defined over a number field K, then let rk(E,K) denote
the rank of the Mordell-Weil group E(K).

Suppose that E/Q is an elliptic curve. Then (1.2) together with a celebrated theorem of
Kolyvagin and the modularity of E implies that

(1.4) #{|D| : rk(E(D), Q) = 0} �E X.

Heath-Brown confirmed (1.4) for the congruent number elliptic curve in [HB], and subsequent
works by James, Vatsal and Wong [Ko, V, Wo] confirm this assertion for a variety of elliptic
curves with rational torsion points of order 3. However, (1.4) remains open for most elliptic
curves.

Corollary 3. If E/Q is an elliptic curve without a Q-rational torsion point of order 2, then
there is a number 0 < α(E) < 1 for which

#{|D| ≤ X : rk(E(D), Q) = 0} �E
X

log1−α(E) X
.

The most interesting consequence of Theorem 1 may be the following result concerning
the triviality of the rank of the Mordell-Weil group of most elliptic curves E over arbitrarily
large prescribed elementary abelian 2-extensions of Q.

Theorem 4. Let E/Q be an elliptic curve without a Q-rational torsion point of order 2.
Then there is a fundamental discriminant DE and a set of primes SE with Frobenius density
0 < α(E) < 1 with the property that for every positive integer j we have

rk(E(DE), Q(
√

m1,
√

m2, . . . ,
√

mj)) = rk(E(DE), Q) = 0

whenever the integers m1,m2, . . . ,mj > 1 satisfy the following conditions:
(1) Each mi is square-free with an even number of prime factors.
(2) All of the prime factors of each mi are in SE.

As in Theorem 1, the choice of DE is not unique.
The last consequence of Theorem 1 that we would like to point out involves Tate-

Shafarevich groups of quadratic twists. By the works of Bölling, Cassels, Kramer, and
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Rohrlich [Bö, Ca, Kr, R], quite a bit is known about the non-triviality of the 2 and 3-parts
of Tate-Shafarevich groups. However, much less is known about the non-triviality of p-parts
of X(E) for primes p ≥ 5. In this direction, Wong [Wo] has proved that infinitely many
quadratic twists of X0(11) have elements of order 5 in their Tate-Shafarevich groups. We
know of no other similar results when p = 5 for any other elliptic curve or any results for
p ≥ 7.

Wong obtained his result by combining an old observation of the author and Frey with
his own results regarding the prime factorization of the discriminants of certain quadratic
fields whose class groups have elements of fixed order ` (e.g. in this case ` = 5). Using
Theorem 1, a theorem of Frey, and a simple refinement of Wong’s strategy for X0(11) we
obtain a general result which probably holds for almost all curves E whose Mordell-Weil
group over Q has torsion subgroup Z/3Z, Z/5Z or Z/7Z. The hypotheses which need to be
verified for any given E are cumbersome and unmotivating. For aesthetics, here we simply
refer to an E which satisfies these hypotheses for a given prime ` ∈ {3, 5, 7} as an excellent
elliptic curve at `. We shall defer the explicit definition to §5.

Theorem 5. Suppose that E/Q is an elliptic curve whose torsion subgroup over Q is Z/`Z
with ` ∈ {3, 5, 7}. If E is excellent at `, then there are infinitely many negative square-free
integers d for which

rk(E(d), Q) = 0 and Z/`Z× Z/`Z ⊆ X(E(d), Q).

Here is a special case of Theorem 5.

Corollary 6. Suppose that E/Q is an elliptic curve whose torsion subgroup over Q is Z/`Z
with ` ∈ {3, 5, 7}. If E has good reduction at ` and there is an odd prime p0 ≡ −1 (mod `)
of bad reduction with

ordp0(∆(E)) 6≡ 0 (mod `),

where ∆(E) is the discriminant of E, then there are infinitely many negative square-free
integers d for which

rk(E(d), Q) = 0 and #X(E(d), Q) ≡ 0 (mod `).

Example. Let E be the elliptic curve of conductor 26 given by

E : y2 + xy + y = x3 − x2 − 3x + 3.

Its torsion subgroup is Z/7Z and we have ∆(E) = −27 · 13. By Corollary 6, there are
infinitely many negative fundamental discriminants D for which

rk(E(D), Q) = 0 and #X(E(D), Q) ≡ 0 (mod 7).
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2. Preliminaries

The arguments in this paper depend heavily on the combinatorics of the half-integer
weight and integer weight Hecke operators combined with the intrinsic properties of Galois
representations associated to newforms (see [K, Mi] for essential facts concerning modular
forms). We briefly recall the definition of Hecke operators. If k is a positive integer and χ
is a Dirichlet character modulo M , then for every prime p - M the Hecke operator T k,χ

p on
Sk(Γ0(M), χ) acts by sending the cusp form f(z) =

∑∞
n=1 af (n)qn to

(2.1) f(z) | T k,χ
p :=

∞∑
n=1

(af (np) + χ(p)pk−1af (n/p))qn.

Similarly, recall that if p - 4N is prime and χ is a Dirichlet character modulo 4N , then the
half-integer weight Hecke operator Tχ

k (p2) on Sk+ 1
2
(Γ0(4N), χ) is defined by sending a cusp

form h(z) =
∑∞

n=1 ah(n)qn to

(2.2) h(z) | Tχ
k (p2) :=

∞∑
n=1

(
ah(np2) + χ?(p)pk−1

(
n

p

)
ah(n) + χ?(p2)p2k−1ah(n/p2)

)
qn,

where χ?(p) := χ(p)
(−1

p

)k.
We also require the following classical result on Galois representations associated to mod-

ular forms due to Deligne and Serre [D, D-S].

Theorem 2.1. Suppose that f(z) =
∑∞

n=1 a(n)qn ∈ Sk(Γ0(M), χ) is an integer weight
newform and suppose that K is a number field whose ring of integers OK contains the
Fourier coefficients a(n) and the values of χ. If Ov is the completion of OK at any finite
place v of K, say with residue characteristic `, then there is a continuous representation

ρf,v : Gal(Q/Q) → GL2(Ov)

with the property that if p - `M is prime, then

Tr(ρf,v(Frob(p))) = a(p).

Using this theorem we prove the following crucial theorem.
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Theorem 2.2. Let f1(z), f2(z), . . . , fy(z) be integer weight cusp forms where

fi(z) =
∞∑

n=1

ai(n)qn ∈ Ski
(Γ0(Mi), χi).

Suppose that the coefficients of all the fi(z) and the values of all the χi are in OK , the ring
of integers of some number field K. Let v be a finite place of K with residue characteristic
`. If p0 - `M1M2 · · ·My is prime and j is a positive integer, then there is a set of primes p
with positive Frobenius density such that for every 1 ≤ i ≤ y we have

ordv

(
fi(z) | T ki,χi

p0
− fi(z) | T ki,χi

p

)
> j.

Proof. By the theory of newforms (a.k.a. primitive forms), each fi(z) may be expressed as

(2.3) fi(z) =
∑
δ|Mi

∑
s

β(i, s, δ)hi,s(δz)

where each β(i, s, δ) is algebraic and the inner sum above is over the newforms hi,s(z) with
level dividing Mi/δ. For convenience, we denote the q-expansions of the hi,s(z) by

(2.4) hi,s(z) =
∞∑

n=1

ai,s(n)qn.

Let K1 be a finite extension of K which contains all the β(i, s, δ) and all the Fourier
coefficients ai,s(n) of all the newforms hi,s(z). Let w be a place of K1 over v and let e be
its ramification index. Moreover, let Ow be the completion of OK1 at w and let λ be its
uniformizer.

For each hi,s(z) let ρi,s,w be the representation described in Theorem 2.1. If E is defined
by

(2.5) E := max
i,s,δ

β(i,s,δ) 6=0

|ordw(β(i, s, δ))|,

then consider the representation

ρ := ⊕i,s ρi,s,w (mod λE+je+1).

Since the image of ρ is finite, the Chebotarev Density Theorem implies that there is a set
of primes p with positive Frobenius density which have the property that

Tr(ρi,s,w(Frob(p))) ≡ ai,s(p0) (mod λE+je+1)

for all i and s. Since ai,s(p) is the eigenvalue of hi,s(z) for the Hecke operator T ki,χi
p for a

prime p - `M1M2 · · ·My, it follows by (2.3-5) that

fi(z) | T ki,χi
p ≡ fi(z) | T ki,χi

p0
(mod λje+1)

for all i.

Q.E.D.
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3. Fourier coefficients of half-integer weight cusp forms

In this section we prove a general nonvanishing theorem for the Fourier coefficients of
most half-integer weight cusp forms. We begin with the following simple proposition.

Proposition 3.1. Suppose that k is a positive integer and that g(z) =
∑∞

n=1 b(n)qn ∈
Sk+ 1

2
(Γ0(4N), χ) is an eigenform of the Hecke operators Tχ

k (p2). If p - 4N is a prime and
λ(p) is the eigenvalue of g(z) with respect to Tχ

k (p2), then

b(np2) =
(

λ(p)− χ?(p)pk−1

(
n

p

))
b(n)− χ?(p2)p2k−1b(n/p2).

Lemma 3.2. Suppose that g(z) =
∑∞

n=1 b(n)qn ∈ Sk+ 1
2
(Γ0(4N), χ) is an eigenform of the

Hecke operators Tχ
k (p2) with eigenvalues λ(p) where k is a positive integer. If k = 1, then

make the further assumption that the image of g(z) under the Shimura correspondence is a
cusp form. Let G(z) ∈ Sk+1(Γ0(4N), χχk+1

−1 ) be the cusp form defined by

G(z) =
∞∑

n=1

bg(n)qn := g(z) ·

(
1 + 2

∞∑
n=1

qn2

)
.

Let K be a number field with the property that all the coefficients b(n) and the values of χ
are in OK , the ring of integers of K. Let v be a place in OK above 2. If there is a prime
p0 - 4N for which

ordv(λ(p0)) = 0,

then for every positive integer j there is a set of primes Sp0,j with positive Frobenius density
which satisfies the following conditions.

(1) If p ∈ Sp0,j, then
ordv(λ(p)) = ordv(λ(p0)) = 0.

(2) If p ∈ Sp0,j then

ordv

(
G(z) | T

k+1,χχk+1
−1

p −G(z) | T
k+1,χχk+1

−1
p0

)
> j.

Proof. If k > 1, then the image of g(z) under the Shimura correspondence is a newform fg(z)
of integer weight 2k and level dividing 4N with Nebentypus character χ2 [Sh]. Moreover, the
eigenvalues of this newform with respect to T 2k,χ2

p are the eigenvalues λ(p) for every prime
p - 4N . The same is true for those g(z) with k = 1 whose image under the correspondence
is a cusp form [Sh]. Therefore we may apply Theorem 2.1 to the eigenvalues λ(p) for primes
p - 4N viewed as the Fourier coefficients afg

(p) of the newform fg(z). The conclusion now
follows immediately from Theorem 2.2 for the forms G(z) and fg(z).

Q.E.D.
We shall require the following Lemma.
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Lemma 3.3. Assume the notation and hypotheses from Lemma 3.2, and define s0 by

s0 := min{ordv(b(n))}.

Then the following are true.
(1) An integer n has the property that ordv(bg(n)) = s0 if and only if ordv(b(n)) = s0.
(2) Let n0 be an integer for which ordv(b(n0)) = s0. If j is a positive integer and

p1, p2, . . . , p2j−1, p2j ∈ Sp0,s0 are distinct primes not dividing n0, then

ordv(b(n0p1p2 · · · p2j−1p2j)) = s0.

Proof. By the definition of G(z), it is easy to see that if n is a positive integer, then

bg(n) = b(n) + 2
∞∑

t=1

b(n− t2).

Conclusion (1) follows easily from the definition of s0 and v.
Suppose that m is a positive integer for which

ordv(b(m)) = s0.

Let q1, q2 ∈ Sp0,s0 be distinct primes which are coprime to m. The coefficient of qmq1 , by

(2.1), in G(z) | T
k+1,χχk+1

−1
q1 is

= bg(mq2
1) + χ(q1)χk+1

−1 (q1)qk
1 bg(m)

=
(

λ(q1)− χ?(q1)qk−1
1

(
m

q1

))
bg(m) + χ(q1)χk+1

−1 (q1)qk
1 bg(m)

= λ(q1)bg(m) + bg(m)χ?(q1)qk−1
1

(
χ−1(q1)q1 −

(
m

q1

))
Since χ−1(q1)q1 −

(
m
q1

)
≡ 0 (mod 2), by Lemma 3.2 we find that the coefficient of qmq1 in

G(z) | T
k+1,χχk+1

−1
q1 has ordv equal to s0.

By Lemma 3.2 (2), the coefficient of qmq1 in G(z) | T
k,χχk+1

−1
q2 also has ordv = s0 if

q2 ∈ Sp0,s0 . This then implies that

bg(mq1q2) + χ(q2)χk+1
−1 (q2)qk

2 bg(mq1/q2)

= bg(mq1q2)

has ordv equal to s0.
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This shows, by (1), that if ordv(b(m)) = s0 and q1, q2 ∈ Sp0,s0 are distinct odd primes
which do not divide m, then

(3.1) ordv(b(mq1q2)) = s0.

Iterating (3.1) yields (2).

Q.E.D.

Now we briefly recall Waldspurger’s theorem, which gives a formula for many of the
central values L(F ⊗ χD, k) in terms of the squares of the Fourier coefficients of cusp forms
with half integer weight k + 1

2 which are related to F (z), or a twist of F (z), by Shimura’s
correspondence [Sh]. For every D define D0 by

(3.2) D0 :=
{ |D| if D is odd,
|D|/4 if D if even.

The following is a convenient reformulation of Waldspurger’s theorem.

Theorem 3.4. ([Th. 1, W1, §2 O-Sk]) If F (z) =
∑∞

n=1 a(n)qn ∈ S2k(Γ0(M), χ0) is an
even weight newform and δ ∈ {±1} is the sign of the functional equation of L(F, s), then
there is a positive integer N with M | N , a Dirichlet character modulo 4N , a non-zero
complex number ΩF and a non-zero eigenform

gF (z) =
∞∑

n=1

bF (n)qn ∈ Sk+ 1
2
(Γ0(4N), χ)

with the property that if δD > 0, then

bF (D0)2 =

{
εD · L(F⊗χD,k)D

k− 1
2

0
ΩF

if gcd(D0, 4N) = 1,

0 otherwise,

where εD is algebraic. Moreover, the coefficients a(n), bF (n) and the values of χ are in OK ,
the ring of integers of some fixed number field K. In addition, if p - 4N is prime, then

λ(p) = χ2(p)a(p),

where λ(p) is the eigenvalue of gF (z) for the half integer weight Hecke operator Tχ
k (p2) on

Sk+ 1
2
(Γ0(4N), χ).

We now prove the following technical theorem which immediately implies Theorem 1.



10 KEN ONO

Theorem 3.5. Assume the notation from Theorem 3.4. Let v be a place of K over 2 and
let s0 be the non-negative integer

s0 := min{ordv(b(n))}.

Suppose there is a prime p - M for which ordv(a(p)) = 0. Then there is a set of primes SF

with positive Frobenius density with the property that for every positive integer j we have

L(F ⊗ χδn0p1p2···p2j
, k) 6= 0

whenever n0 is a square-free integer with ordv(bF (n0)) = s0 and p1, p2, . . . , p2j ∈ SF are
distinct primes not dividing n0.

Proof of Theorem 3.5. We apply Lemma 3.3 to the eigenform gF (z) given in Theorem 3.4.
Since gF (z) is an eigenform, by (2.2) there is a square-free integer n0 coprime to 4N for
which ordv(b(n0)) = s0. Theorem 1 now follows from Lemma 3.3 and Theorem 3.4.

Q.E.D.

Lemma 3.6. Let T be a set of primes with Frobenius density 0 < α < 1. If NT denotes the
set

NT := {n ∈ N : n =
∏

i

pi, pi ∈ T, and µ(n) = 1},

then

#{n ≤ X : n ∈ NT } �T
X

log1−α X
.

Here µ denotes the usual Möbius function.

Proof. Generalizing an argument of Landau, Serre proved [Th. 2.8, S] that if NT (X) is
defined by

NT (X) := {n ≤ X : n =
∏

i

pi with pi ∈ T},

then

(3.3) #NT (X) = cT ·
X

log1−α X
+ O

(
X

log2−α X

)
for some positive constant cT . Therefore, we need to consider those n counted in (3.3) which
are square-free and have an even number of prime factors. Now let MT (X) denote the set

MT (X) := {n ≤ X : n ∈ NT (X) square-free}.
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It is easy to see that

#MT (X) ≥ #NT (X)−
∑

pi≤
√

X
pi∈T

#NT (X/p2
i )

≥ #NT (X)−
∑

pi≤
√

X
pi∈T

1
p2

i

#NT (X) � #NT (X).(3.4)

Define No
T (X) by

No
T (X) := #{n ≤ X : n ∈ MT (X) with µ(n) = −1}.

Obviously, we have that

(3.5) #MT (X) = #NT (X) + #No
T (X).

If p0 ∈ T is prime, then by multiplying elements in No
T (X/p0) by p0 we find that

#NT (X) ≥ #No
T (X/p0)−#{n ≤ X : n ∈ No

T (X/p0) and gcd(n, p0) = p0}
� #No

T (X/p0).(3.6)

So, if NT (X) = o
(

X
log1−α X

)
, then by (3.5) and (3.6) we have that

MT (X/p0) = o

(
X

log1−α X

)
.

However, this contradicts (3.4), which asserts that

MT (X/p0) �
X

(log X − log p0)1−α
.

Q.E.D.

Proof of Corollary 2. This result follows immediately by letting the set T in Lemma 3.6 be
the set SF in Theorem 1.

Q.E.D.

4. Applications to ranks of elliptic curves

We recall a celebrated result due to Kolyvagin [Kol] which depends on a nonvanishing
theorem for modular L-functions which can be attributed to Bump, Friedberg and Hoffstein,
Iwaniec, and Murty and Murty [B-F-H, I, M-M].
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Theorem 4.1. If E/Q is a modular elliptic curve for which L(E, 1) 6= 0, then rk(E, Q) = 0.

Proof of Corollary 3. By the works of Wiles and Taylor, Diamond, Conrad, Diamond and
Taylor, and Breuil, Conrad, Diamond and Taylor [W, T-W, Di, C-D-T, B-C-D-T], it is now
known that every elliptic curve E/Q is modular. If E is an elliptic curve with conductor
N(E) and D is coprime to N(E), then L(E(D), s) is the D-quadratic twist of L(E, s).
These are simply quadratic twists of modular L-functions. The conclusion of Corollary 3
now follows immediately by Theorem 4.1, Theorem 1, and Corollary 2. We use the fact that
aE(p) is even for all but finitely many primes p if and only if E has a rational point of order
2.

Q.E.D.

We recall the following well known proposition.

Proposition 4.2. Let E/Q be an elliptic curve. Suppose that S := {m1,m2, . . . ,mt} is
a set of square-free pairwise coprime integers > 1 such that for each 1 ≤ s ≤ t and any
d1, d2, . . . , ds ∈ S distinct we have

rk(E(d1d2 · · · ds), Q) = 0.

Then for every integer 1 ≤ s ≤ t we have

rk(E, Q(
√

m1,
√

m2, . . . ,
√

ms)) = rk(E, Q).

Proof of Theorem 4. This result follows from Theorem 1, Theorem 4.1 and Proposition 4.2.

Q.E.D.

5. Applications to Tate-Shafarevich groups of elliptic curves

In this section we prove Theorem 5 and give one numerical example. If E is an elliptic
curve over Q, then let N(E) denote its conductor, j(E) its j-invariant, and ∆(E) its dis-
criminant. If p is prime, then let S(E, Q)p be its pth-Selmer group and let X(E, Q) denote
the Tate-Shafarevich group of E. We begin by recalling an important Theorem due to Frey
[Fr] regarding the Selmer groups of quadratic twists of elliptic curves with a rational point
of odd prime order ` (note: By a theorem of Mazur this forces ` = 3, 5, or 7).

Theorem 5.1. Let ` be an odd prime such that E/Q is an elliptic curve with good reduction
at ` with a point of order `. Define the set of primes S(E, `) by

S(E, `) := {q | N(E) : q 6= 2, q ≡ −1 (mod `) and ordq(∆(E)) 6≡ 0 (mod `)}.

Suppose that d is a negative square-free integer satisfying the following conditions:
(1) We have gcd(d, `N(E)) = 1 and d ≡ 3 (mod 4).
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(2) If ord`(j(E)) < 0, then
(
d
`

)
= −1.

(3) If q | N(E) is prime but q 6∈ {2, `} ∪ S(E, `) then

(
d

q

)
=


−1 if ordq(j(E)) ≥ 0,

−1 if ordq(j(E)) < 0 and E/Qq is a Tate curve,
1 otherwise.

If Cl(d)` denotes the `-part of the ideal class group of Q(
√

d), then

#Cl(d)` | #S(E(d), Q)`.

Now we give the precise definition of an excellent elliptic curve.

Definition 5.2. Let E/Q be an elliptic curve with a rational point of odd prime order `
that has good reduction at `. Moreover, suppose that

gE(z) =
∞∑

n=1

bE(n)qn ∈ S3/2(Γ0(4N), χ)

is an eigenform, for some N , satisfying the conclusion of Theorem 3.4 for the weight 2
newform

FE(z) =
∞∑

n=1

aE(n)qn ∈ S2(Γ0(N(E)), χ0)

associated to E with δ = −1. Moreover, suppose that v is a place of K over 2 and that

s0 := min{ordv(bE(n))}.

We say that E is excellent at ` if there is a negative square-free integer dE which satisfies
all of the following conditions:

(1) This integer dE is coprime to `N(E) and satisfies the congruence

dE ≡ 3 (mod 4).

(2) If ord`(j(E)) < 0, then
(
dE

`

)
= −1.

(3) If q | N(E) is prime but q 6∈ {2, `} ∪ S(E, `), then

(
dE

q

)
=


−1 if ordq(j(E)) ≥ 0,

−1 if ordq(j(E)) < 0 and E/Qq is a Tate curve,
1 otherwise.

(4) We have that
ordv(bE(|dE |)) = s0.
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Remark. Condition (4) above is not as restrictive as it may appear. It is typical that a
suitable modification of gE(z) satisfies it. Specifically, suppose that dE has the property
that bE(|dE |) 6= 0. By using combinations of twists and possibly twists of twists of gE(z),
one may replace gE(z) by the cusp form

g̃E(z) =
∑

bE(n)qn

where the sum ranges over those positive integers n ≡ |dE | mod (Q×
q )2 for each prime

q | N(E). It is now easy to see that g̃E(z) is non-zero and has a d̃E which satisfies (4).

Wong [Wo] has proved a nice theorem regarding the existence of quadratic fields whose
ideal class groups contain elements of order ` with the additional property that all of the
prime factors p of the discriminant of these fields have Frob(p) lying in some prescribed
conjugacy class in the Galois group of any fixed Galois extension K/Q. A straightforward
modification of Wong’s arguments yields the following theorem.

Theorem 5.3. Let K/Q be a finite Galois extension, and let c be a conjugacy class in
Gal(K/Q). Moreover, let S(K, c) denote the set of negative square-free integers which are
divisible by only primes p which are unramified in K/Q and whose Frob(p) lies in c. Let
M0 and M1 be positive odd square-free coprime integers. For every odd prime ` there are
infinitely many numbers −d ∈ S(K, c) for which

(i) − dM1 ≡ 3 (mod 4),

(ii) gcd(d, M0) = 1,

(iii) #Cl(−dM1)` ≡ 0 (mod `),

(iv) µ(d) = 1.

Before we sketch the proof of Theorem 5.3, we use it to prove Theorem 5.

Proof of Theorem 5. Since E is excellent at `, we may apply Theorem 5.1 by hypothesis to
E(dE). However, much more is true. Let SE be the set of primes with positive density given
in Theorem 3.5. By considering a sufficiently large Galois extension, one which contains
the `N(E)’th roots of unity, we may assume that every prime p ∈ SE enjoys the following
properties: (

p

q

)
=
(

p0

q

)
for every prime q | N(E),(5.1) (

p

`

)
=
(

p0

`

)
.(5.2)

By (5.1-2) and Theorem 5.1 we find that if j is a positive integer and p1, p2, . . . , p2j ∈ SE

are distinct primes not dividing dE , then

L(E(dEp1p2 · · · p2j), 1) 6= 0,(5.3)

#Cl(dEp1p2 · · · p2j)` | #S(E(dEp1p2 · · · p2j)).(5.4)
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This follows from the fact that the conditions in Frey’s theorem are quadratic residue con-
ditions which dE satisfies.

However, by Kolyvagin’s theorem, (5.3) implies that E(dEp1p2 · · · p2j) has rank zero.
Therefore, we find that if p1, p2, . . . , p2j ∈ SE are distinct primes which do not divide dE ,
then

(5.5) #Cl(dEp1p2 · · · p2j)` ≡ 0 (mod `) ⇒ Z/`Z× Z/`Z ⊆ X(E(dEp1p2 · · · p2j)).

This follows from the fact that #X(E(dEp1p2 · · · p2j)) is a square when finite, and the fact
that E(dEp1p2 · · · p2j) does not have a Q-rational point of order ` since a family of quadratic
twists has at most one curve with a Q-rational point of order `. The theorem now follows
from Theorem 5.3.

Q.E.D.

Now we briefly show how to modify Wong’s argument to deduce Theorem 5.3.

Sketch of Proof of Theorem 5.3. Suppose that p0 - M1 is a prime such that Frob(p0) lies in
c. Now pick a sufficiently large odd prime g for which

(
p0
g

)
= −1 and

(
M1
g

)
=
(−1

g

)
. Let K ′

be the extension of K defined by adjoining the gth roots of unity. Moreover, let c′ be the
conjugacy class of p0 in Gal(K ′/Q). It is easy to see that every prime p whose Frob(p) is
in c′ has the property that its Frob(p) in Gal(K/Q) is in c and has the additional property
that

(5.6)
(

p

g

)
= −1.

If ∆K′ is the discriminant of K ′, then define the positive integer C by

(5.7) C :=
∏

q|M0·∆K′ odd prime,
q-M1

q.

For positive integers G, define the set of integers S(G) by
(5.8)

S(G) :=
{

0 < x ≤ G

g
: x ∈ 2Z, gcd(x, g) = 1, x 6≡ ±1 (mod q) for every prime q | C

}
.

Let δ be any fixed positive multiple of `
∏

q|C(q−1). If λ is sufficiently large and x ∈ S(gδλ)
and satisfies the property that

(5.9) d := g2δλ − x2

is square-free, then we easily see that d ≡ 1 (mod 4) and is a positive integer with no prime
factors in common with C. By [Lemma 1, Wo], it follows that #Cl(−d)` ≡ 0 (mod `).
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Suppose that d is such a number which is a multiple of M1 with the property that all the
prime factors p of d/M1 have Frob(p) in c′. Since

(d/M1
g

)
= 1, by (5.9), the choice of g, and

(5.6), there must be an even number of p. This yields (iv). Hence, any such d satisfies the
conclusion of the theorem.

Therefore it suffices to show that one can construct infinitely many such d. If λ is
sufficiently large, then there always is such a d, and the proof of this assertion follows
virtually mutatis mutandis the proof of [Lemma 2, Wo]. Since selecting larger and larger
λ′s uncovers quadratic fields whose class groups contains elements with orders that are larger
and larger multiples of `, the infinitude of the number of d is obvious.

Q.E.D.

Proof of Corollary 6. If E is excellent at `, then the proof is complete. In view of the remark
preceding Theorem 5.3, it remains to consider the case where δ, the sign of the functional
equation of L(E, s), is +1.

We recall a simple fact regarding the signs of functional equations of twists. If D is odd
and coprime to N(E), then the sign of the functional equation of L(E(D), s) is δχD(−N(E)).
Let d+ ≡ 1 (mod 4) be a positive square-free integer for which the sign of the functional
equation of L(E(d+), s) is -1 which also satisfies conditions (2) and (3) for dE in Definition
5.2. This can be done since conditions (2) and (3) impose no restriction on

(d+
p0

)
. It is now

simple to modify the proof of Theorem 5 by using the weight 3/2 cusp form associated to
E(d+) by Theorem 3.4.

Q.E.D.
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