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Abstract. Monstrous moonshine relates distinguished modular functions to the rep-
resentation theory of the Monster M. The celebrated observations that

(*) 1 = 1, 196884 = 1 + 196883, 21493760 = 1 + 196883 + 21296876, . . . . . .

illustrate the case of J(τ) = j(τ) − 744, whose coefficients turn out to be sums of the
dimensions of the 194 irreducible representations of M. Such formulas are dictated by
the structure of the graded monstrous moonshine modules. Recent works in moonshine
suggest deep relations between number theory and physics. Number theoretic Klooster-
man sums have reappeared in quantum gravity, and mock modular forms have emerged
as candidates for the computation of black hole degeneracies. This paper is a survey of
past and present research on moonshine. We also compute the quantum dimensions of
the monster orbifold, and obtain exact formulas for the multiplicities of the irreducible
components of the moonshine modules. These formulas imply that such multiplicities
are asymptotically proportional to dimensions. For example, the proportion of 1’s in
(*) tends to

dim(χ1)∑194
i=1 dim(χi)

=
1

5844076785304502808013602136
= 1.711 . . .× 10−28.

1. Introduction

This story begins innocently with peculiar numerics, and in its present form exhibits
connections to conformal field theory, string theory, quantum gravity, and the arithmetic
of mock modular forms. This paper is an introduction to the many facets of this beautiful
theory.

We begin with a review of the principal results in the development of monstrous moon-
shine in §§2-4. We refer to the introduction of [105], and the more recent survey [117],
for more on these topics. After describing these classic works, we discuss the interplay
between moonshine and Rademacher sums in §5, and related observations which suggest
a connection between monstrous moonshine and three-dimensional quantum gravity in
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§6. The remainder of the paper is devoted to more recent works. We describe a gener-
alization of moonshine, the moonshine tower, in §7, and in §8 we compute the quantum
dimensions of the monster orbifold and discuss the distributions of irreducible representa-
tions of the monster arising in monstrous moonshine. We present a survey of the recently
discovered umbral moonshine phenomenon in §9, and conclude, in §10, with problems for
future work.

2. Early Days

The classification of finite simple groups [2] distinguishes twenty-six examples above
the others; namely, the sporadic simple groups, which are those that belong to none of the
naturally occurring infinite families: cyclic groups, alternating groups, or finite groups
of Lie type. Distinguished amongst the sporadic simple groups is the Fischer–Griess
monster M, on account of its size, which is

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71(2.1)

(cf. [120]). Note that the margin is not small, for the order of the monster is

25 · 37 · 53 · 74 · 11 · 132 · 29 · 41 · 59 · 71(2.2)

times that of the next largest sporadic simple group, the baby monster (cf. [170]).
Fischer and Griess independently produced evidence for the monster group in 1973 (cf.

[120]). Well before it was proven to exist, Tits gave a lecture on its conjectural properties
at the Collège de France in 1975. In particular, he described its order (2.1). Around this
time, Ogg had been considering the automorphism groups of certain algebraic curves,
and had arrived at the set of primes

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}(2.3)

in a purely geometric way (cf. the Corollaire of [194]). Making what may now be
identified as the first observation of monstrous moonshine, Ogg offered a bottle of Jack
Daniels1 for an explanation of this coincidence (cf. Remarque 1 of [194]).

Ogg’s observation would ultimately be recognized as reflecting another respect in which
the monster is distinguished amongst finite simple groups: as demonstrated by the pi-
oneering construction of Frenkel–Lepowsky–Meurman [103, 104, 105], following the as-
tonishing work of Griess [121, 122], the “most natural” representation of the monster, is
infinite-dimensional.

The explanation of this statement takes us back to McKay’s famous observation, that

196884 = 1 + 196883(2.4)

1We refer the reader to [91] for a recent analysis of the Jack Daniels problem.
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(cf. [59, 222]), and the generalizations of this observed by Thompson [222], including2

21493760 = 1 + 196883 + 21296876,

864299970 = 2× 1 + 2× 196883 + 21296876 + 842609326,

20245856256 = 2× 1 + 3× 196883 + 2× 21296876 + 842609326 + 19360062527.

(2.5)

Of course the left hand sides of (2.4) and (2.5) are familiar to number theorists and
algebraic geometers, as coefficients in the Fourier coefficients of the normalized elliptic
modular invariant

J(τ) :=
1728g2(τ)3

g2(τ)3 − 27g3(τ)2
− 744

= q−1 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4 + . . .

(2.6)

Here q := e2πiτ , and we set g2(τ) := 60G4(τ) and g3(τ) := 140G6(τ), where G2k(τ)
denotes the Eisenstein series of weight 2k,

G2k(τ) :=
∑

(m,n)6=(0,0)

(m+ nτ)−2k,(2.7)

for k ≥ 2. The functions g2 and g3 serve to translate between the two most common
parameterizations of a complex elliptic curve: as a quotient C/(Z + Zτ) for τ in the
upper-half plane, H := {τ ∈ C | =(τ) > 0}, and as the locus of a Weierstrass equation,
y2 = 4x3 − g2x− g3.

The fundamental property of J(τ), from both the number theoretic and algebro-
geometric points of view, is that it is a modular function for SL2(Z). In fact, and
importantly for the monster’s natural infinite-dimensional representation, J(τ) is a gen-
erator for the field of SL2(Z)-invariant holomorphic functions on H that have at most
exponential growth as =(τ)→∞.

The right hand sides of (2.4) and (2.5) are familiar to finite group theorists, as simple
sums of dimensions of irreducible representations of the monster M. In fact, the irre-
ducible representations appearing in (2.4) and (2.5) are just the first six, of a total of

2As was pointed out to us by J.-P. Serre, the decomposition for 20245856256 that appears in [222]
differs from that which develops from the monster’s natural, infinite-dimensional representation. We
reproduce Serre’s decomposition in (2.5).
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194, in the character table of M (cf. [57]), when ordered by size. We have that

χ1(e) = 1

χ2(e) = 196883

χ3(e) = 21296876

χ4(e) = 842609326

χ5(e) = 18538750076

χ6(e) = 19360062527

...

χ194(e) = 258823477531055064045234375.

(2.8)

Here e denotes the identity element of M, so χi(e) is just the dimension of the irreducible
representation of M with character χi.

3. Classical Moonshine

The coincidences (2.4) and (2.5) led Thompson to make the following conjecture [222]
which realizes the natural representation of the monster alluded to above.

Conjecture 3.1 (Thompson). There is a naturally defined graded infinite-dimensional
monster module, denoted V \ =

⊕∞
n=−1 V

\
n , which satisfies

dim(V \
n) = c(n)(3.1)

for n ≥ −1 (Cf. (2.6)), such that the decompositions into irreducible representations
of the monster satisfy (2.4) and (2.5) for n = 1, 2, 3 and 4 (and a similar condition for
n = 5).

At the time that Thompson’s conjecture was made, the monster had not yet been
proven to exist, but Griess [120], and Conway–Norton [59], had independently conjectured
the existence of a faithful representation of dimension 196883, and Fischer–Livingstone–
Thorne had constructed the character table of M, by assuming the validity of this claim
(cf. [59]) together with conjectural statements (cf. [120]) about the structure of M.

Thompson also suggested [221] to investigate the properties of the graded-trace func-
tions

Tg(τ) :=
∞∑

n=−1

tr(g|V \
n)qn,(3.2)

for g ∈ M, now called the monstrous McKay–Thompson series, that would arise from
the conjectural monster module V \. Using the character table constructed by Fischer–
Livingstone–Thorne, it was observed [59, 221] that the functions Tg are in many cases
directly similar to J in the following respect: the first few coefficients of each Tg coincide
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with those of a generator for the function field of a discrete group3 Γg < SL2(R), com-
mensurable with SL2(Z), containing −I, and having width one at infinity, meaning that
the subgroup of upper-triangular matrices in Γg coincides with

Γ∞ :=

{
±
(

1 n
0 1

)
| n ∈ Z

}
,(3.3)

for all g ∈M.
This observation was refined and developed by Conway–Norton [59], leading to their

famous monstrous moonshine conjectures:.

Conjecture 3.2 (Monstrous Moonshine: Conway–Norton). For each g ∈ M there is a
specific group Γg < SL2(R) such that Tg is the unique normalized principal modulus4 for
Γg.

This means that each Tg is the unique Γg-invariant holomorphic function on H which
satisfies

Tg(τ) = q−1 +O(q),(3.4)

as =(τ) → ∞, and remains bounded as τ approaches any non-infinite cusp of Γg. We
refer to this feature of the Tg as the principal modulus property of monstrous moonshine.

The hypothesis that Tg is Γg-invariant, satisfying (3.4) near the infinite cusp of Γg but
having no other poles, implies that Tg generates the field of Γg-invariant holomorphic
functions on H that have at most exponential growth at cusps, in direct analogy with J .
In particular, the natural Riemann surface structure on Γg\H (cf. e.g. [212]) must be

that of the Riemann sphere Ĉ = C∪{∞} with finitely many points removed, and for this
reason the groups Γg are said to have genus zero, and the principal modulus property is
often referred to as the genus zero property of monstrous moonshine.

The reader will note the astonishing predictive power that the principal modulus prop-
erty of monstrous moonshine bestows: the fact that a normalized principal modulus for
a genus zero group Γg is unique, means that we can compute the trace of an element
g ∈M, on any homogeneous subspace of the monster’s natural infinite-dimensional rep-
resentation V \, without any information about the monster, as soon as we can guess
correctly the discrete group Γg. The analysis of Conway–Norton in [59] establishes very
strong guidelines for the determination of Γg, and once Γg has been chosen, the “theory
of replicability” (cf. [1, 59, 192]) allows for efficient computation of the coefficients of the
normalized principal modulus Tg, given the knowledge of just a few of them (cf. [100],
or (3.10)).

It was verified by Atkin–Fong–Smith [213], using results of Thompson [221] (cf. also
[208]), that a graded (possibly virtual) infinite-dimensional monster module V \, such that
the functions Tg of (3.2) are exactly those predicted by Conway–Norton in [59], exists.

3The relevant groups Γg shall be discussed in detail in Section 8.1.
4A principal modulus is also referred to as a Hauptmodul.
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Theorem 3.3 (Atkin–Fong–Smith). There exists a (possibly virtual) graded M-module
V \ =

⊕∞
n=−1 V

\
n such that if Tg is defined by (3.2), then Tg is the Fourier expansion of

the unique Γg-invariant holomorphic function on H that satisfies Tg(τ) = q−1 + O(q) as
τ approaches the infinite cusp, and has no poles at any non-infinite cusps of Γg, where
Γg is the discrete subgroup of SL2(R) specified by Conway–Norton in [59].

Thus Thompson’s conjecture was confirmed, albeit indirectly. By this point in time,
Griess, in an astonishing tour de force, had constructed the monster explicitly, by hand,
by realizing it as the automorphism group of a commutative but non-associative algebra
of dimension 196884 [121, 122]. (See also [56, 223].) Inspired by Griess’ construction, and
by the representation theory of affine Lie algebras, which also involves graded infinite-
dimensional vector spaces whose graded dimensions enjoy good modular properties (cf.
e.g. [149, 150, 151, 154]), Frenkel–Lepowsky–Meurman established Thompson’s conjec-
ture in a strong sense.

Theorem 3.4 (Frenkel–Lepowsky–Meurman). Thompson’s Conjecture is true. In par-
ticular, the moonshine module V \ is constructed in [103, 104].

Frenkel–Lepowsky–Meurman generalized the homogeneous realization of the basic rep-
resentation of an affine Lie algebra ĝ due, independently, to Frenkel–Kac [102] and Segal
[209], in such a way that Leech’s lattice Λ [168, 169]—the unique [54] even self-dual
positive-definite lattice of rank 24 with no roots—could take on the role played by the
root lattice of g in the Lie algebra case. In particular, their construction came equipped
with rich algebraic structure, furnished by vertex operators, which had appeared first in
the physics literature in the late 1960’s.

We refer to [102], and also the introduction to [105] for accounts of the role played
by vertex operators in physics (up to 1988) along with a detailed description of their
application to the representation theory of affine Lie algebras. The first application of
vertex operators to affine Lie algebra representations was obtained by Lepowsky–Wilson
in [172].

Borcherds described a powerful axiomatic formalism for vertex operators in [15]. In
particular, he introduced the notion of a vertex algebra, which can be regarded as similar
to a commutative associative algebra, except that multiplications depend upon formal
variables zi, and can be singular, in a certain formal sense, along the canonical divisors
{zi = 0}, {zi = zj} (cf. [20, 101]).

The appearance of affine Lie algebras above, as a conceptual ingredient for the Frenkel–
Lepowsky–Meurman construction of V \ hints at an analogy between complex Lie groups
and the monster. Borcherds’ vertex algebra theory makes this concrete, for Borcherds
showed [15] that both in the case of the basic representation of an affine Lie algebra, and
in the case of the moonshine module V \, the vertex operators defined by Frenkel–Kac,
Segal, and Frenkel–Lepowsky–Meurmann, extend naturally to vertex algebra structures.

In all of these examples the Virasoro algebra, V =
⊕

nCL(n)⊕ Cc, being the unique
universal central extension of the Lie algebra C[t, t−1] d

dt
of polynomial vector fields on
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the circle,

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0c, [L(m), c] = 0,(3.5)

acts naturally on the underlying vector space. (See [155] for a detailed analysis of V .
The generator L(m) lies above the vector field −tm+1 d

dt
.) This Virasoro structure, which

has powerful applications, was axiomatized in [105], with the introduction of the notion
of a vertex operator algebra. If V is a vertex operator algebra and the central element c
of the Virasoro algebra acts as c times the identity on V , for some c ∈ C, then V is said
to have central charge c.

For the basic representation of an affine Lie algebra ĝ, the group of vertex operator
algebra automorphisms—i.e. those vertex algebra automorphisms that commute with the
Virasoro action—is the adjoint complex Lie group associated to g. For the moonshine
module V \, it was shown by Frenkel–Lepowsky–Meurman in [105], that the group of
vertex operator algebra automorphisms is precisely the monster.

Theorem 3.5 (Frenkel–Lepowsky–Meurman). The moonshine module V \ =
⊕∞

n=−1 V
\
n

is a vertex operator algebra of central charge 24 whose graded dimension is given by J(τ),
and whose automorphism group is M.

Vertex operator algebras are of relevance to physics, for we now recognize them as
“chiral halves” of two-dimensional conformal field theories (cf. [106, 107]). From this
point of view, the construction of V \ by Frenkel–Lepowsky–Meurman constitutes one of
the first examples of an orbifold conformal field theory (cf. [73, 74, 75]). In the case of
V \, the underlying geometric orbifold is the quotient(

R24/Λ
)
/(Z/2Z),(3.6)

of the 24-dimensional torus Λ ⊗Z R/Λ ' R24/Λ by the Kummer involution x 7→ −x,
where Λ denotes the Leech lattice. So in a certain sense, V \ furnishes a “24-dimensional”
construction of M. We refer to [101, 105, 153, 171] for excellent introductions to vertex
algebra, and vertex operator algebra theory.

Affine Lie algebras are special cases of Kac–Moody algebras, first considered by Kac
[148] and Moody [185, 186], independently. Roughly speaking, a Kac–Moody algebra is
“built” from copies of sl2, in such a way that most examples are infinite-dimensional,
but much of the finite-dimensional theory carries through (cf. [152]). Borcherds gener-
alized this further, allowing also copies of the three-dimensional Heisenberg Lie algebra
to serve as building blocks, and thus arrived [16] at the notion of generalized Kac–Moody
algebra, or Borcherds–Kac–Moody (BKM) algebra, which has subsequently found many
applications in mathematics and mathematical physics (cf. [139, 207]).

One of the most powerful such applications occurred in moonshine, when Borcherds
introduced a particular example—the monster Lie algebra m—and used it to prove [18]
the moonshine conjectures of Conway–Norton. His method entailed using monster-
equivariant versions of the denominator identity for m to verify that the coefficients
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of the McKay–Thompson series Tg, defined by (3.2) according to the Frenkel–Lepowsky–
Meurman construction of V \, satisfy the replication formulas conjectured by Conway–
Norton in [59]. This powerful result reduced the proof of the moonshine conjectures to a
small, finite number of identities, that he could easily check by hand.

Theorem 3.6 (Borcherds). Let V \ be the moonshine module vertex operator algebra
constructed by Frenkel–Lepowsky–Meurman, whose automorphism group is M. If Tg is
defined by (3.2) for g ∈ M, and if Γg is the discrete subgroup of SL2(R) specified by
Conway–Norton in [59], then Tg is the unique normalized principal modulus for Γg.

Recall that an even self-dual lattice of signature (m,n) exists if and only if m− n = 0
(mod 8) (cf. e.g. [63]). Such a lattice is unique up to isomorphism if mn > 0, and is
typically denoted IIm,n. In the case that m = n = 1 we may take

II1,1 := Ze+ Zf,(3.7)

where e and f are isotropic, 〈e, e〉 = 〈f, f〉 = 0, and 〈e, f〉 = 1. Then me+nf ∈ II1,1 has
square-length 2mn. Note that II25,1 and Λ⊕ II1,1 are isomorphic, for Λ the Leech lattice,
since both lattices are even and self-dual, with signature (25, 1).

In physical terms the monster Lie algebra m is (“about half” of) the space of “physical
states” of a bosonic string moving in the quotient(

R24/Λ⊕ R1,1/II1,1

)
/(Z/2Z)(3.8)

of the 26-dimensional torus II25,1 ⊗Z R/II25,1 ' R24/Λ ⊕ R1,1/II1,1 by the involution
(x, y) 7→ (−x, y) (acting as the Kummer involution on the Leech summand, and trivially
on the hyperbolic summand). The monster Lie algebra m is constructed in a functorial
way from V \ (cf. [37]), inherits an action by the monster from V \, and admits a monster-
invariant grading by II1,1.

The denominator identity for a Kac–Moody algebra g equates a product indexed by
the positive roots of g with a sum indexed by the Weyl group of g. A BKM algebra also
admits a denominator identity, which for the case of the monster Lie algebra m is the
beautiful Koike–Norton–Zagier formula

p−1
∏
m,n∈Z
m>0

(1− pmqn)c(mn) = J(σ)− J(τ),(3.9)

where σ ∈ H and p = e2πiσ (and c(n) is the coefficient of qn in J(τ), cf. (2.6)). Since the
right hand side of (3.9) implies that the left hand side has no terms pmqn with mn 6= 0,
this identity imposes many non-trivial polynomial relations upon the coefficients of J(τ).
Among these is

c(4n+ 2) = c(2n+ 2) +
n∑
k=1

c(k)c(2n− k + 1),(3.10)

which was first found by Mahler [174] by a different method, along with similar expres-
sions for c(4n), c(4n+ 1), and c(4n+ 3), which are also entailed in (3.9). Taken together
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these relations allow us to compute the coefficients of J(τ) recursively, given just the
values

c(1) = 196884,

c(2) = 21493760,

c(3) = 864299970,

c(5) = 333202640600.

(3.11)

To recover the replication formulas of [59, 192] we require to replace J with Tg, and
c(n) = dim(V \

n) with tr(g|V \
n) in (3.9), and for this we require a categorification of the

denominator identity, whereby the positive integers c(mn) are replaced with M-modules
of dimension c(mn).

A categorification of the denominator formula for a finite-dimensional simple complex
Lie algebra was obtained by Kostant [166], following an observation of Bott [23]. This was
generalized to Kac–Moody algebras by Garland–Lepowsky [119], and generalized further
to BKM algebras by Borcherds in [18]. In its most compact form, it is the identity of
virtual vector spaces ∧

−1
(e) = H(e),(3.12)

where e is the sub Lie algebra of a BKM algebra corresponding to its positive roots (cf.
[144, 145, 152]).

In (3.12), which is a version of the Euler–Poincaré principle, we understand
∧
−1(e) to

be the specialization of the formal series∧
t
(e) :=

∑
k≥0

∧k(e)tk(3.13)

to t = −1, where ∧k(e) is the k-th exterior power of e, and we write

H(e) :=
∑
k≥0

(−1)kHk(e)(3.14)

for the alternating sum of the Lie algebra homology groups of e.
In the case of the monster Lie algebra m, the spaces ∧k(e) and Hk(e) are graded by II1,1,

and acted on naturally by the monster. If we use the variables p and q to keep track of
the II1,1-gradings, then the equality of (3.12) holds in the ring R(M)[[p, q]][q−1] of formal
power series in p and q (allowing finitely many negative powers of q), with coefficients
in the (integral) representation ring of M. The so-called no-ghost theorem (cf. Theorem
5.1 in [18]) allows to express the Hk(e) in terms of the homogenous subspaces of V \, and
the identity (3.12) becomes

∧
−1

 ∑
m,n∈Z
m>0

V \
mnp

mqn

 =
∑
m∈Z

V \
mp

m+1 −
∑
n∈Z

V \
npq

n.(3.15)
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(It turns out that Hk(e) = 0 for k ≥ 3.)

The identity (3.15) returns (3.9) once we replace V \
k everywhere with dim(V \

k ) = c(k),

and divide both sides by p. More generally, replacing V \
k with tr(g|V \

k ) for g ∈ M, we
deduce from (3.15) that

p−1 exp

−∑
k>0

∑
m,n∈Z
m>0

1

k
tr(gk|V \

mn)pmkqnk

 = Tg(σ)− Tg(τ)(3.16)

(cf. [18], and also [147]), which, in turn, implies the replication formulas formulated
in [59, 192]. Taking g = e in (3.16) we recover (3.9), so (3.16) furnishes a natural,
monster-indexed family of analogues of the identity (3.9).

4. Modularity

Despite the power of the BKM algebra theory developed by Borcherds, and despite
some conceptual improvements (cf. [65, 145, 146]) upon Borcherds’ original proof of
the moonshine conjectures, a conceptual explanation for the principal modulus property
of monstrous moonshine is yet to be established. Indeed, there are generalizations and
analogs of the notion of replicability which hold for generic modular functions and forms
(for example, see [32]), not just those modular functions which are principal moduli.

Zhu explained the modularity of the graded dimension of V \ in [238], by proving that
this is typical for vertex operator algebras satisfying certain natural (but restrictive)
hypotheses, and Dong–Li–Mason extended Zhu’s work in [80], obtaining modular in-
variance results for graded trace functions arising from the action of a finite group of
automorphisms.

To prepare for a statement of the results of Zhu and Dong–Li–Mason, we mention
that the module theory for vertex operators algebras includes so-called twisted modules,
associated to finite order automorphisms. If g is a finite order automorphism of V , then
V is called g-rational in case every g-twisted V -module is a direct sum of simple g-twisted
V -modules. Dong–Li–Mason proved [79] that a g-rational vertex operator algebra has
finitely many simple g-twisted modules up to isomorphism. So in particular, a rational
vertex operator algebra has finitely many simple (untwisted) modules.

Given a module M for the vertex operator algebra V , let us write dim∗M for its graded
dimension,

dim∗M :=
∑
n

dim(Mn)qn.(4.1)

When the substitution q = e2πiτ in (4.1) yields a locally uniformly convergent series for
τ ∈ H write ZM(τ) for the resulting holomorphic function on the upper half plane,

ZM(τ) := dim∗M |q=e2πiτ .(4.2)

Theorem 4.1 (Zhu, Dong–Li–Mason). Let V be rational C2-cofinite vertex operator al-
gebra. Then the graded dimensions dim∗M

i of its simple modules M i define holomorphic
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functions ZM i(τ) which span a finite-dimensional representation of SL2(Z). More gener-
ally, if G is a finite subgroup of Aut(V ) and V is g-rational for every g ∈ G, then the

graded trace functions
∑

n tr(h̃|Mn)qn, attached to the triples (g, h̃,M), where g, h ∈ G
commute, M is a simple h-stable g-twisted module for V , and h̃ is a lift of h to GL(M),
span a finite-dimensional representation of SL2(Z).

We refer to the Introduction of [80] (see also §2 of [81]) for a discussion of h-stable
twisted modules, and the relevant notion of lift. Note that any two lifts for h differ
only up to multiplication by a non-zero scalar, so

∑
n tr(h̃|Mn)qn is uniquely defined by

(g, h,M), up to a non-zero scalar.
In the case of V \, there is a unique simple g-twisted module V \

g =
⊕

n(V \
g )n for every

g ∈M = Aut(V \) (cf. Theorem 1.2 of [79]), and V \
g is necessarily h-stable for any h ∈M

that commutes with g. Therefore, Theorem 4.1 suggests that the functions

T(g,h̃)(τ) :=
∑
n

tr(h̃|(V \
g )n)qn,(4.3)

associated to pairs (g, h) of commuting elements of M, may be of interest.
Indeed, this was anticipated a decade earlier by Norton, following observations of

Conway–Norton [59] and Queen [199], which associated principal moduli to elements of
groups that appear as centralizers of cyclic subgroups in the monster. Norton formulated
his generalized moonshine conjectures in [191] (cf. also [193], and the Appendix to [182]).

Conjecture 4.2 (Generalized Moonshine: Norton). There is an assignment of holomor-
phic functions T(g,h̃) : H→ C to every pair (g, h) of commuting elements in the monster,
such that the following are true:

(1) For every x ∈M we have T(x−1gx,x−1h̃x) = T(g,h̃).

(2) For every γ ∈ SL2(Z) we have that T(g,h̃)γ(τ) is a scalar multiple of T(g,h̃)(γτ).

(3) The coefficient functions h̃ 7→ tr(h̃|(V \
g )n), for fixed g and n, define characters of

a projective representation of the centralizer of g in M,
(4) We have that T(g,h̃) is either constant or a generator for the function field of a

genus zero group Γ(g,h) < SL2(R).
(5) We have that T(g,h̃) is a scalar multiple of J if and only if g = h = e.

Remark. In Conjecture 4.2 (2) above, the right-action of SL2(Z) on commuting pairs of
elements of the monster is given by

(g, h)γ := (gahc, gbhd)(4.4)

for γ = ( a bc d ). The (slightly ambiguous) T(g,h̃)γ denotes the graded trace of a lift of

gbhd to GL(V \
gahc). Norton’s generalized moonshine conjectures reduce to the original

Conway–Norton moonshine conjectures of [59] when g = e.

Conjecture 4.2 is yet to be proven in full, but has been established for a number of
special cases. Theorem 4.1 was used by Dong–Li–Mason in [80], following an observation
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of Tuite (cf. [77], and [224, 225, 226] for broader context), to prove Norton’s conjecture
for the case that g and h generate a cyclic subgroup of M, and this approach, via twisted
modules for V \, has been extended by Ivanov–Tuite in [142, 143]. Höhn obtained a
generalization of Borcherds’ method by using a particular twisted module for V \ to
construct a BKM algebra adapted to the case that g is in the class named 2A in [57]—
the smaller of the two conjugacy classes of involutions in M—and in so doing established
[136] generalized moonshine for the functions T(g,h̃) with g ∈ 2A. So far the most general

results in generalized moonshine have been obtained by Carnahan [35, 36, 37]. (See [38]
for a recent summary.)

Theorem 4.1 explains why the McKay–Thompson series Tg(τ) of (3.2), and the T(g,h̃)(τ)

of (4.3) more generally, should be invariant under the actions of (finite index) subgroups of
SL2(Z), but it does not explain the surprising predictive power of monstrous moonshine.
That is, it does not explain why the full invariance groups Γg of the Tg should be so
large that they admit normalized principal moduli, nor does it explain why the Tg should
actually be these normalized principal moduli.

A program to establish a conceptual foundation for the principal modulus property of
monstrous moonshine, via Rademacher sums and three-dimensional gravity, was initiated
in [85] by the first author and Frenkel.

5. Rademacher Sums

To explain the conjectural connection between gravity and moonshine, we first recall
some history. The roots of the approach of [85] extend back almost a hundred years,
to Einstein’s theory of general relativity, formulated in 1915, and the introduction of
the circle method in analytic number theory, by Hardy–Ramanujan [132]. At the same
time that pre-war efforts to quantize Einstein’s theory of gravity were gaining steam
(see [214] for a review), the circle method was being refined and developed, by Hardy–
Littlewood (cf. [131]), and Rademacher [200], among others. (See [227] for a detailed
account of what is now known as the Hardy–Littlewood circle method.) Despite being
contemporaneous, these works were unrelated in science until this century: as we will
explain presently, Rademacher’s analysis led to a Poincaré series-like expression—the
prototypical Rademacher sum—for the elliptic modular invariant J(τ). It was suggested
first in [71] (see also [181]) that this kind of expression might be useful for the computation
of partition functions in quantum gravity.

Rademacher “perfected” the circle method introduced by Hardy–Ramanujan, and he
obtained an exact convergent series expression for the combinatorial partition function
p(n). In 1938 he generalized this work [201] and obtained such exact formulas for the
Fourier coefficients of general modular functions. For the elliptic modular invariant
J(τ) =

∑
n c(n)qn (cf. (2.6)), Rademacher’s formula (which was obtained earlier by
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Petersson [198], via a different method) may be written as

c(n) = 4π2
∑
c>0

∑
0<a<c
(a,c)=1

e−2πia
c e2πin d

c

c2

∑
k≥0

(4π2)k

c2k

1

(k + 1)!

nk

k!
,(5.1)

where d, in each summand, is a multiplicative inverse for a modulo c, and (a, c) is the
greatest common divisor of a and c. Having established the formula (5.1), Rademacher
sought to reverse the process, and use it to derive the modular invariance of J(τ). That
is, he set out to prove directly that J0(τ + 1) = J0(−1/τ) = J0(τ), when J0(τ) is defined
by setting J0(τ) = q−1 +

∑
n>0 c(n)qn, with c(n) defined by (5.1).

Rademacher achieved this goal in [202], by reorganizing the summation∑
n>0

c(n)qn = 4π2
∑
n>0

∑
c>0

∑
0<a<c
(a,c)=1

e−2πia
c e2πin(τ+ d

c
)

c2

∑
k≥0

(4π2)k

c2k

1

(k + 1)!

nk

k!
(5.2)

into a Poincaré series-like expression for J . More precisely, Rademacher proved that

J(τ) + 12 = e−2πiτ + lim
K→∞

∑
0<c<K

−K2<d<K2

(c,d)=1

e−2πiaτ+b
cτ+d − e−2πia

c ,(5.3)

where a, b ∈ Z are chosen arbitrarily, in each summand, so that ad− bc = 1. We call the
right hand side of (5.3) the first Rademacher sum.

Rademacher’s expression (5.3) for the elliptic modular invariant J is to be compared
to the formal sum ∑

c,d∈Z
(c,d)=1

e−2πimaτ+b
cτ+d ,(5.4)

for m a positive integer, which we may regard as a (formal) Poincaré series of weight zero
for SL2(Z). In particular, (5.4) is (formally) invariant for the action of SL2(Z), as we
see by recognizing the matrices ( a bc d ) as representatives for the right coset space Γ∞\Γ,
where Γ = SL2(Z) and Γ∞ is defined in (3.3): for a fixed bottom row (c, d) of matrices in
SL2(Z), any two choices for the top row (a, b) are related by left-multiplication by some
element of Γ∞.

The formal sum (5.4) does not converge for any τ ∈ H, so a regularization procedure is
required. Rademacher’s sum (5.3) achieves this, for m = 1, by constraining the order of

summation, and subtracting the limit as =(τ)→∞ of each summand e−2πiaτ+b
cτ+d , whenever

this limit makes sense. Rademacher’s method has by now been generalized in various ways
by a number of authors. The earliest generalizations are due to Knopp [158, 159, 160, 161],
and a very general negative weight version of the Rademacher construction was given by
Niebur in [189]. We refer to [46] for a detailed review and further references. A nice
account of the original approach of Rademacher appears in [157].
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We note here that one of the main difficulties in establishing formulas like (5.3) is
the demonstration of convergence. When the weight w of the Rademacher sum under
consideration lies in the range 0 ≤ w ≤ 2, then one requires non-trivial estimates on
sums of Kloosterman sums, like

∑
c>0

∑
0<a<c
(a,c)=1

e−2πima
c e2πin d

c

c2
(5.5)

(for the case that w = 0 or w = 2). The demonstration of convergence generally becomes
more delicate as w approaches 1.

In [85] the convergence of a weight zero Rademacher sum R
(−m)
Γ (τ) is shown, for m

a positive integer and Γ an arbitrary subgroup of SL2(R) that is commensurable with
SL2(Z). Assuming that Γ contains −I and has width one at infinity (cf. (3.3)), we have

R
(−m)
Γ (τ) = e−2πimτ + lim

K→∞

∑
(Γ∞\Γ)×<K

e−2πimaτ+b
cτ+d − e−2πima

c ,(5.6)

where the summation, for fixed K, is over non-trivial right cosets of Γ∞ in Γ (cf. (3.3)),
having representatives ( a bc d ) such that 0 < c < K and |d| < K2.

The modular properties of the R
(−m)
Γ are also considered in [85], and it is at this point

that the significance of Rademacher sums in monstrous moonshine appears. To state the
relevant result we give the natural generalization (cf. §3.2 of [85]) of the Rademacher–
Petersson formula (5.1) for c(n), which is

cΓ(−m,n) = 4π2 lim
K→∞

∑
(Γ∞\Γ/Γ∞)×<K

e−2πima
c e2πin d

c

c2

∑
k≥0

(4π2)k

c2k

mk+1

(k + 1)!

nk

k!
,(5.7)

where the summation, for fixed K, is over non-trivial double cosets of Γ∞ in Γ (cf. (3.3)),
having representatives ( a bc d ) such that 0 < c < K. Note that this formula simplifies for
n = 0, to

cΓ(−m, 0) = 4π2m lim
K→∞

∑
(Γ∞\Γ/Γ∞)×<K

e−2πima
c

c2
.(5.8)

The value cΓ(−1, 0) is the Rademacher constant attached to Γ. (Cf. §6 of [192] and §5.1
of [85].)

A normalized Rademacher sum T
(−m)
Γ (τ) is defined in §4.1 of [85] by introducing an

extra complex variable and taking a limit. It is shown in §4.4 of [85] that

T
(−m)
Γ (τ) = R

(−m)
Γ (τ)− 1

2
cΓ(−m, 0)(5.9)
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for any group Γ < SL2(R) that is commensurable with SL2(Z). If Γ has width one at
infinity (cf. (3.3)), then also

T
(−m)
Γ (τ) = q−m +

∑
n>0

cΓ(−m,n)qn,(5.10)

so in particular, T
(−m)
Γ (τ) = q−m+O(q) as =(τ)→∞. The following theorem by the first

author and Frenkel summarizes the central role of Rademacher sums and the principal
modulus property.

Theorem 5.1 (Duncan–Frenkel [85]). Let Γ be a subgroup of SL2(R) that is commen-

surable with SL2(Z). Then the normalized Rademacher sum T
(−m)
Γ is Γ-invariant if and

only if Γ has genus zero. Furthermore, if Γ has genus zero then T
(−1)
Γ is the normalized

principal modulus for Γ.

In the case that the normalized Rademacher sum T
(−1)
Γ is not Γ-invariant, T

(−m)
Γ is

an abelian integral of the second kind for Γ, in the sense that it has at most exponential

growth at the cusps of Γ, and satisfies T
(−m)
Γ (γτ) = T

(−m)
Γ (τ) + ω(γ) for γ ∈ Γ, for some

function ω : Γ→ C (depending on m).
Theorem 5.1 is used as a basis for the formulation of a characterization of the dis-

crete groups Γg of monstrous moonshine in terms of Rademacher sums in §6.5 of [85],
following earlier work [58] of Conway–McKay–Sebbar. It also facilitates a proof of the
following result, which constitutes a uniform construction of the McKay–Thompson series
of monstrous moonshine.

Theorem 5.2 (Duncan–Frenkel [85]). Let g ∈ M. Then the McKay–Thompson series

Tg coincides with the normalized Rademacher sum T
(−1)
Γg

.

Proof. Theorem 3.6 states that Tg is a normalized principal modulus for Γg, and in

particular, all the Γg have genus zero. Given this, it follows from Theorem 5.1 that T
(−1)
Γg

is also a normalized principal modulus for Γg. A normalized principal modulus is unique

if it exists, so we conclude Tg = T
(−1)
Γg

for all g ∈M, as we required to show. �

Perhaps most importantly, Theorem 5.1 is an indication of how the principal modulus
property of monstrous moonshine can be explained conceptually. For if we can develop a
mathematical theory in which the underlying objects are graded with graded traces that
are provably

(1) modular invariant, for subgroups of SL2(R) that are commensurable with SL2(Z),
and

(2) given explicitly by Rademacher sums, such as (5.6),

then these graded trace functions are necessarily normalized principal moduli, according
to Theorem 5.1.

We are now led to ask: what kind of mathematical theory can support such results?
As we have alluded to above, Rademacher sums have been related to quantum gravity by
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articles in the physics literature. Also, a possible connection between the monster and
three-dimensional quantum gravity was discussed in [233]. This suggests the possibil-
ity that three-dimensional quantum gravity and moonshine are related via Rademacher
sums, and was a strong motivation for the work [85]. In the next section we will give a
brief review of quantum gravity, since it is an important area of physical inquiry which
has played a role in the development of moonshine, but we must first warn the reader:
problems have been identified with the existing conjectures that relate the monster to
gravity, and the current status of this connection is uncertain.

6. Quantum Gravity

Witten was the first to predict a role for the monster in quantum gravity. In [233]
Witten considered pure quantum gravity in three dimensions with negative cosmological
constant, and presented evidence that the moonshine module V \ is a chiral half of the
conformal field theory dual to such a quantum gravity theory, at the most negative
possible value of the cosmological constant.

To explain some of the content of this statement, note that the action in pure three-
dimensional quantum gravity is given explicitly by

IEG :=
1

16πG

∫
d3x
√
−g(R− 2Λ),(6.1)

where G is the Newton or gravitational constant, R denotes the Ricci scalar, and the
cosmological constant is the scalar denoted by Λ.

The case that the cosmological constant Λ is negative is distinguished, since then there
exist black hole solutions to the action (6.1), as was discovered by Bañados–Teitelboim–
Zanelli [9]. These black hole solutions—the BTZ black holes—are locally isomorphic to
three-dimensional anti-de Sitter space [8], which is a Lorentzian analogue of hyperbolic
space, and may be realized explicitly as the universal cover of a hyperboloid

−X2
−1 −X2

0 +X2
1 +X2

2 +X3
3 = −`2(6.2)

in R2,3 (cf. e.g. [175]). The parameter ` in (6.2) is called the radius of curvature. For
a locally anti-de Sitter (AdS) solution to (6.1), the radius of curvature is determined by
the cosmological constant, according to

`2 = −1/Λ.(6.3)

In what has become the most cited5 paper in the history of high energy physics,
Maldacena opened the door on a new, and powerful approach to quantum gravity in
[176], by presenting evidence for a gauge/gravity duality, in which gauge theories serve
as duals to gravity theories in one dimension higher. (See [175] for a recent review.) In
the simplest examples, the gauge theories are conformal field theories, and the gravity

5Maldacena’s groundbreaking paper [176] on the gauge/gravity duality has over 10,000 citations at
the time of writing, according to inspirehep.net.
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theories involve locally AdS spacetimes. The gauge/gravity duality for these cases is now
known as the AdS/CFT correspondence.

Maldacena’s duality furnishes a concrete realization of the holographic principle, intro-
duced by ’t Hooft [217], and elaborated on by Susskind [216]. For following refinements
to Maldacena’s proposal due to Gubser–Klebanov–Polyakov [127], and Witten [232], it
is expected that gravity theories with (d+ 1)-dimensional locally AdS spacetimes can be
understood through the analysis of d-dimensional conformal field theories defined on the
boundaries of these AdS spaces. Thus in the case of AdS solutions to three-dimensional
quantum gravity, a governing role may be played by two-dimensional conformal theories,
which can be accessed mathematically via vertex operator algebras (as we have mentioned
in §3).

The conjecture of [233] is that the two-dimensional conformal field theory correspond-
ing to a tensor product of two copies of the moonshine module V \ (one “left-moving,”
the other “right-moving”) is the holographic dual to pure three-dimensional quantum
gravity with ` = 16G, and therefore

Λ = − 1

256G2
.(6.4)

It is also argued that the only physically consistent values of ` are ` = 16Gm, for m a
positive integer, so that (6.4) is the most negative possible value for Λ, by force of (6.3).

Shortly after this conjecture was formulated, problems with the quantum mechanical
interpretation were identified by Maloney–Witten in [179]. Moreover, Gaiotto [115] and
Höhn [138] cast doubt on the relevance of the monster to gravity by demonstrating that
it cannot act on a holographically dual conformal field theory corresponding to ` = 32G
(i.e. m = 2), at least under the hypotheses (namely, an extremality condition, and
holomorphic factorization) presented in [233].

Interestingly, the physical problems with the analysis of [233] seem to disappear in the
context of chiral three-dimensional gravity, which was introduced and discussed in detail
by Li–Song–Strominger in [173] (cf. also [178, 215]). This is the gravity theory which
motivates much of the discussion in §7 of [85].

In order to define chiral three-dimensional gravity, we first describe topologically mas-
sive gravity, which was introduced in 1982 by Deser–Jackiw–Templeton [69, 70]. (See
also [68].) The action for topologically massive gravity is given by

ITMG := IEG + ICSG,(6.5)

where IEG is the Einstein–Hilbert action (cf. (6.1)) of pure quantum gravity, and ICSG

denotes the gravitational Chern–Simons term

ICSG :=
1

32πGµ

∫
d3x
√
−gελµνΓρλσ

(
∂µΓσρν +

2

3
ΓσµτΓ

τ
νρ

)
.(6.6)

The Γ∗∗∗ are Christoffel symbols, and the parameter µ is called the Chern–Simons coupling
constant.
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Chiral three-dimensional gravity is the special case of topologically massive gravity in
which the Chern–Simons coupling constant is set to µ = 1/` =

√
−Λ. It is shown in [173]

that at this special value of µ, the left-moving central charges of the boundary conformal
field theories vanish, and the right-moving central charges are

c =
3`

2G
= 24m,(6.7)

for m a positive integer, ` = 16Gm.
Much of the analysis of [233] still applies in this setting, and the natural analogue of

the conjecture mentioned above states that V \ is holographically dual to chiral three-
dimensional quantum gravity at ` = 16G, i.e. m = 1. However, as argued in detail
in [178], the problem of quantizing chiral three-dimensional gravity may be regarded as
equivalent to the problem of constructing a sequence of extremal chiral two-dimensional
conformal field theories (i.e. vertex operator algebras), one for each central charge c =
24m, for m a positive integer. Here, a vertex operator algebra V =

⊕
n Vn with central

charge c = 24m is called extremal, if its graded6 dimension function satisfies

dim∗ V = q−m
1∏

n>1(1− qn)
+O(q)(6.8)

(cf. (4.1).) The moonshine module is the natural candidate for m = 1 (indeed, it is the
only candidate if we assume the uniqueness conjecture of [105]), as the right hand side of
(6.8) reduces to q−1 + O(q) in this case, but the analysis of [115, 138] also applies here,
indicating that the monster cannot act non-trivially on any candidate7 for m = 2. Thus
the role of the monster in quantum gravity is still unclear, even in the more physically
promising chiral gravity setting.

Nonetheless, the moonshine module V \ may still serve as the holographic dual to chiral
three-dimensional quantum gravity at ` = 16G, m = 1. In this interpretation, the graded
dimension, or genus one partition function for V \—namely, the elliptic modular invariant
J—serves as the exact spectrum of physical states of chiral three-dimensional gravity at
µ =

√
−Λ = 1/16G, in spacetime asymptotic to the three-dimensional anti-de Sitter

space (cf. (6.2)).
Recall that if V is a representation of the Virasoro algebra V (cf. (3.5)), then v ∈ V

is called a Virasoro highest weight vector with highest weight h ∈ C if L(m)v = hδm,0v
whenever m ≥ 0. A Virasoro descendant is a vector of the form

L(m1) · · ·L(mk)v,(6.9)

where v is a Virasoro highest weight vector, and m1 ≤ · · · ≤ mk ≤ −1.
Assuming that V \ is dual to chiral three-dimensional gravity at m = 1, the Virasoro

highest weight vectors in V \ define operators that create black holes, and the Virasoro
descendants of a highest weight vector describe black holes embellished by boundary

6We regard all vertex operator algebras as graded by L(0)− c/24. Cf. (3.5).
7The existence of extremal vertex operator algebras with central charge c = 24m for m > 1 remains

an open question. We refer to [111, 116, 138, 235] for analyses of this problem.
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excitations. In particular, the 196883-dimensional representation of the monster which is
contained in the 196884-dimensional homogenous subspace V \

1 < V \ (cf. (2.4) and (3.1)),
represents an 196883-dimensional space of black hole states in the chiral gravity theory.

More generally, the black hole states in the theory are classified, by the monster, into
194 different kinds, according to which monster irreducible representation they belong
to.

Question 6.1. Assuming that the moonshine module V \ serves as the holographic dual
to chiral three-dimensional quantum gravity at m = 1, how are the 194 different kinds
of black hole states distributed amongst the homogeneous subspaces V \

n < V \. Are some
kinds of black holes more or less common than others?

This question will be answered precisely in §8.
A positive solution to the conjecture that V \ is dual to chiral three-dimensional gravity

at m = 1 may furnish a conceptual explanation for why the graded dimension of V \ is
the normalized principal modulus for SL2(Z). For on the one hand, modular invariance
is a consistency requirement of the physical theory—the genus one partition function
function is really defined on the moduli space SL2(Z)\H of genus one curves, rather than
on H—and on the other hand, the genus one partition function of chiral three-dimensional
gravity is given by a Rademacher sum, as explained by Manschot–Moore [181], following
earlier work [71] by Dijkgraaf–Maldacena–Moore–Verlinde. (Cf. also [178, 179, 180].) So,
as we discussed in §5, the genus one partition function must be the normalized principal
modulus J(τ) for SL2(Z), according to Theorem 5.1.

In the analysis of [180, 181], the genus one partition function of chiral three-dimensional
gravity is a Rademacher sum (5.6), because it is obtained as a sum over three-dimensional
hyperbolic structures on a solid torus with genus one boundary, and such structures are
naturally parameterized by the coset space Γ∞\ SL2(Z) (cf. (3.3)), as explained in [177]

(see also §5.1 of [71]). The terms e−2πimaτ+b
cτ+d in (5.6) are obtained by evaluating e−ITMG ,

with µ =
√
−Λ = 1/16Gm, on a solution with boundary curve C/(Z + τZ), and the

subtraction of e−2πima
c represents quantum corrections to the classical action.

In [85], the above conjecture is extended so as to encompass the principal modulus
property for all elements of the monster, with a view to establishing a conceptual foun-
dation for monstrous moonshine. More specifically, the first main conjecture of [85] states
the following.

Conjecture 6.2 (Duncan–Frenkel). There exists a monster-indexed family of twisted
chiral three-dimensional gravity theories, whose genus one partition functions at

µ =
√
−Λ = 1/16G(6.10)

are given by T
(−1)
Γg

(−1/τ), where T
(−1)
Γg

(τ) is the normalized Rademacher sum attached

to Γg, satisfying (5.9).

From the point of view of vertex operator algebra theory, Tg(−1/τ)—which coincides

with T
(−1)
Γg

(−1/τ) according to Theorems 3.6 and 5.1—is the graded dimension of the
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unique simple g-twisted V \-module V \
g (cf. §4). This non-trivial fact about the functions

Tg(−1/τ) is proven by Carnahan in Theorem 5.1.4 of [37].
Geometrically, the twists of the above conjecture are defined by imposing (general-

ized) spin structure conditions on solutions to the chiral gravity equations, and allowing
orbifold solutions of certain kinds. See §7.1 of [85] for a more complete discussion. The
corresponding sums over geometries are then indexed by coset spaces Γ∞\Γ, for vari-
ous groups Γ < SL2(R), commensurable with SL2(Z). According to Theorem 5.1, the
genus one partition function corresponding to such a twist, expected to be a Rademacher
sum on physical grounds, will only satisfy the basic physical consistency condition of Γ-
invariance if Γ is a genus zero group. One may speculate that a finer analysis of physical
consistency will lead to the list of conditions given in §6.5 of [85], which characterize the
groups Γg for g ∈M, according to Theorem 6.5.1 of [85]. Thus the discrete groups Γg of
monstrous moonshine may ultimately be recovered as those defining physically consistent
twists of chiral three-dimensional gravity.

On the other hand, it is reasonable to expect that twisted chiral gravity theories are
determined by symmetries of the underlying untwisted theory. Conceptually then, but
still conjecturally, the monster group appears as the symmetry group of chiral three-
dimensional gravity, for which the corresponding twists exist. The principal modulus
property of monstrous moonshine may then be explained: as a consequence of Theorem
5.1, together with the statement that the genus one partition function of a twisted the-

ory is T
(−1)
Γ (−1/τ), where T

(−1)
Γ (τ) is the normalized Rademacher sum attached to the

subgroup Γ < SL2(R) that parameterizes the geometries of the twist.
Before concluding this section we mention two further variations on three-dimensional

gravity which may ultimately prove relevant to moonshine. The first of these is log gravity
which was initiated by work [124] of Grumiller–Johansson, and discussed also in [178].
We refer to [126] for a detailed review. The second is flat space chiral gravity which was
introduced in [7], and is also reviewed in [126].

For more background on the mathematics and physics of black holes we refer the reader
to [125]. We refer to [33, 34] for reviews that focus on the particular role of conformal
field theory in understanding quantum gravity.

7. Moonshine Tower

An optimistic view on the relationship between moonshine and gravity is adopted in
§7 of [85]. In particular, in §7.2 of [85] the consequences of Conjecture 6.2 for the second
quantization of chiral three-dimensional gravity are explored. (We warn the reader that
the notion of second quantized gravity is very speculative at this stage.)

Motivated in part by the results on second quantized string theory in [72], the existence
of a tower of monster modules

V (−m) =
∞⊕

n=−m

V (−m)
n ,(7.1)
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parameterized by positive integer values of m, is predicted in §7.2 of [85]. Moreover, it
is suggested that the graded dimension of V (−m) should be given by

J (−m) := mT̂ (m)J,(7.2)

where T̂ (m) denotes the (order m) Hecke operator, acting on SL2(Z)-invariant holomor-
phic functions on H according to the rule

(T̂ (m)f)(τ) :=
1

m

∑
ad=m
0≤b<d

f

(
aτ + b

d

)
.(7.3)

Standard calculations (cf. e.g. Chp.VII, §5 of [210]) determine that mT̂ (m)J is an
SL2(Z)-invariant holomorphic function on H, whose Fourier coefficients

J (−m)(τ) =
∑
n

c(−m,n)qn(7.4)

are expressed in terms of those of J(τ) =
∑∞

n=−1 c(n)qn, by c(−m,n) = δ−m,n for n ≤ 0,
and

c(−m,n) =
∑
k>0

k|(m,n)

m

k
c(mn/k2),(7.5)

for n > 0, where (m,n) denotes the greatest common divisor of m and n. In partic-
ular, J (−m)(τ) = q−m + O(q) as =(τ) → ∞. There is only one such SL2(Z)-invariant
holomorphic function on H, so we have

J (−m)(τ) =
∞∑

n=−m

dim(V (−m))qn = T
(−m)
Γ (τ)(7.6)

according to (5.10) and Theorem 5.1, when Γ = SL2(Z). So the graded dimension of
V (−m) is also a normalized Rademacher sum.

We would like to investigate the higher order analogues of the McKay–Thompson series
Tg (cf. (3.2)), encoding the graded traces of monster elements on V (−m), but for this we

must first determine the M-module structure on each homogeneous subspace V
(−m)
n .

A solution to this problem is entailed in Borcherds’ proof [18] of the monstrous moon-
shine conjectures, and the identity (3.15), in particular. To explain this, recall the Adams
operation ψk on virtual G-modules, defined, for k ≥ 0 and G a finite group, by requiring
that

tr(g|ψk(V )) = tr(gk|V )(7.7)

for g ∈ G. (Cf. [6, 162] for more details on Adams operations.) Using the ψk we may
equip V (−m) with a virtual M-module structure (we will see momentarily that it is actually
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an M-module, cf. Proposition 7.2) by defining V
(−m)
−m := C to be the one-dimensional

trivial M-module, V
(−m)
n := 0 for −m < n ≤ 0, and

V (−m)
n :=

⊕
k>0

k|(m,n)

Cm/k ⊗ ψk(V \
mn/k2)(7.8)

for n > 0, where Cm/k denotes the trivial M-module of dimension m/k. For convenience

later on, we also define V (0) = V
(0)

0 := C to be the trivial, one-dimensional M-module,
regarded as graded, with grading concentrated in degree n = 0.

Evidently ψk preserves dimension, so the graded dimension of V (−m) is still given by

J (−m), according to (7.5). Define the order m McKay–Thompson series T
(−m)
g , for m ≥ 0

and g ∈M, by setting

T (−m)
g (τ) := q−m +

∑
n>0

tr(g|V (−m)
n )qn.(7.9)

Then T
(0)
g = 1 for all g ∈ M, and T

(−1)
g is the original McKay–Thompson series Tg.

More generally, we have the following result, which constructs the T
(−m)
g uniformly and

explicitly as Rademacher sums.

Theorem 7.1. For m > 0 and g ∈ M we have T
(−m)
g (τ) = T

(−m)
Γg

(τ), where Γg is the

invariance group of Tg(τ), and T
(−m)
Γ denotes the normalized Rademacher sum of order

m attached to Γ, as in (5.9). In particular, T
(−m)
g (τ) is a monic integral polynomial of

degree m in Tg(τ).

Proof. We will use Borcherds’ identity (3.15). To begin, note that T
(−m)
g is given explicitly

in terms of traces on V \ by

T (−m)
g (τ) = q−m +

∑
n>0

∑
k|(m,n)

m

k
tr(g|ψk(V \

mn/k2))q
n(7.10)

according to (7.8) and (7.9). Recall that R(G) denotes the integral representation ring of
a finite group G. Extend the ψk from R(G) to R(G)[[p, q]][q−1], by setting ψk(Mpmqn) =
ψk(M)pkmqkm for M ∈ R(G). Then it is a general property of the Adams operations (cf.
§5.2 of [147]) that

log
∧
−1

(X) = −
∑
k>0

1

k
ψk(X)(7.11)
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in R(G)[[p, q]][q−1] ⊗Z Q, for X ∈ R(G)[[p, q]][q−1]. So taking X =
∑

m,n∈Z
m>0

V \
mnp

mqn we

obtain

log
∧
−1

 ∑
m,n∈Z
m>0

V \
mnp

mqn

 = −
∑
k>0

∑
m,n∈Z
m>0

1

k
ψk(V \

mn)pkmqkn

= −
∑
m,n∈Z
m>0

∑
k|(m,n)

1

k
ψk(V \

mn/k2)p
mqn

(7.12)

for the logarithm of the left hand side of (3.15). If we now define V (−m)(q) :=
∑

n V
(−m)
n qn,

an element of R(M)[[q]][q−1], then the generating series
∑

m>0 p
mV (−m)(q) is obtained

when we apply −p∂p to (7.12), according to the definition (7.8) of the V
(−m)
n as elements

of R(M). So apply −p∂p log( · ) to both sides of (3.15) to obtain the identity∑
m>0

V (−m)(q)pm = −1− (p∂pV
\(p))

∑
k≥0

V \(q)kV \(p)−k−1(7.13)

in R(M)[[p, q]][q−1], where V \(q) = V (−1)(q) = q−1 +
∑

n>0 V
\
nq

n. The right hand
side of (7.13) really is a taylor series in p, for we use V \(p)−1 as a short hand for∑

k≥0(−1)kpk+1V \
+(p), where V \

+(p) :=
∑

n>0 V
\
np

n is the regular part of V \(p).

The McKay–Thompson series T
(−m)
g (τ) is just the trace of g on V (−m)(q), so an appli-

cation of tr(g| · ) to (7.13) replaces V (−m)(q) with T
(−m)
g (τ), and V \(q) with Tg(τ), etc.

and shows that T
(−m)
g is indeed a polynomial in Tg, of degree m since the leading term

of T
(−m)
g is q−m by definition. In particular, T

(−m)
g is a modular function for Γg, with no

poles away from the infinite cusp. Since Γg has genus zero, such a function is uniquely
determined (up to an additive constant) by the polar terms in its Fourier expansion. The

McKay–Thompson series T
(−m)
g and the Rademacher sum T

(−m)
Γg

both satisfy q−m +O(q)

as =(τ) → ∞ (cf. (5.10)), and neither have poles away from the infinite cusp, so they
must coincide. This completes the proof. �

Remark. The identity obtained by taking the trace of g ∈M on (7.13) may be compactly
rewritten ∑

m≥0

T (−m)
g (τ)pm =

p∂pTg(σ)

Tg(τ)− Tg(σ)
,(7.14)

where p = e2πiσ and Tg(σ) =
∑

m tr(g|V \
m)pm. This expression (7.14) is proven for some

special cases by a different method in [12].

Recall that the monster group has 194 irreducible ordinary representations, up to
equivalence. Let us denote these by Mi, for 1 ≤ i ≤ 194, where the ordering is as in [57],
so that the character of Mi is the function denoted χi in [57]. Define mi(−m,n) to be
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the multiplicity of Mi in V
(−m)
n , so that

V (−m)
n '

194⊕
i=1

M
⊕mi(−m,n)
i(7.15)

as M-modules, and c(−m,n) =
∑194

i=1 mi(−m,n)χi(e).

A priori, the M-modules V
(−m)
n may be virtual, meaning that some of the integers

mi(−m,n) are negative.

Proposition 7.2. The V
(−m)
n are all (non-virtual) modules for the monster. In particu-

lar, the integers mi(−m,n) are all non-negative.

Proof. The claim follows from the modification of Borcherds’ proof of Theorem 3.6 pre-
sented by Jurisich–Lepowsky–Wilson in [147]. In [147] a certain free Lie sub algebra u−

of the monster Lie algebra m is identified, for which the identity Λ(u−) = H(u−) (or
rather, the logarithm of this) yields

∑
m,n>0

∑
k|(m,n)

1

k
ψk(V \

mn/k2)p
mqn =

∑
k>0

1

k

( ∑
m,n>0

V \
m+n−1p

mqn

)k

(7.16)

in R(M)[[p, q]][q−1]⊗Q. (Notice the different range of summation, compared to (3.15).)

We apply p∂p to (7.16), and recall the definition (7.8) of V
(−m)
n to obtain

∑
m,n>0

V (−m)
n pmqn =

∑
k>0

( ∑
m,n>0

mV \
m+n−1p

mqn

)( ∑
m,n>0

V \
m+n−1p

mqn

)k−1

.(7.17)

The coefficient of pmqn in the right hand side of (7.17) is evidently a non-negative integer
combination of the M-modules V \

n , so the proof of the claim is complete. �

In §8 we will determine the behavior of the multiplicity functions mi(−m,n) (cf. (7.15))
as n→∞. For applications to gravity a slightly different statistic is more relevant. Recall
from §6 that it is the Virasoro highest weight vectors—i.e. those v ∈ V \

n with L(k)v = 0
for k > 0—that represent black hole states in chiral three-dimensional gravity at m = 1.
Such vectors generate highest weight modules for V , the structure of which has been
determined by Feigin–Fuchs in [99]. (See [5] for an alternative treatment.) Specializing
to the case that the central element c (cf. (3.5)) acts as c = 24m times the identity, for
some positive integer m, we obtain from the results of [99] that the isomorphism type
of an irreducible highest weight module for V depends only on the L(0)-eigenvalue of a
generating highest weight vector, v, and if L(0)v = hv for h a non-negative integer, then

dim∗ L(h, c) =

{
q−m(1− q)(q)−1

∞ if h = 0,

qh−m(q)−1
∞ if h > 0,

(7.18)
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(cf. (4.1)) where L(h, c) denotes the irreducible highest weight V-module generated by
v, and

(q)∞ :=
∏
n>0

(1− qn).(7.19)

(Note that all the Virasoro modules in this work are graded by L(0) − c/24. See [130]
for details of the calculation that returns (7.18) in the case that m = 1.)

Remark. We may now recognize the leading terms in (6.8) as exactly those of the graded
dimension of the Virasoro module L(0, 24m).

It is known that V \ is a direct sum of highest weight modules for the Virasoro algebra
(cf. e.g. [130]). Since the Virasoro and monster actions on V \ commute, we have an
isomorphism

V \ ' L(0, 24)⊗W \
−1 ⊕

⊕
n>0

L(n+ 1, 24)⊗W \
n(7.20)

of modules for V×M, where W \
n denotes the subspace of V \

n spanned by Virasoro highest
weight vectors. To investigate how the black hole states in V \ are organized by the
representation theory of the monster, we define non-negative integers ni(n) by requiring
that

W \
n '

194⊕
i=1

M
⊕ni(n)
i ,(7.21)

for n ≥ −1.
Evidently ni(n) ≤mi(−1, n) for all i and n since W \

n is a subspace of V \
n . To determine

the precise relationship between the ni(n) and mi(−1, n), define Ug(τ) for g ∈ M by
setting

Ug(τ) :=
∞∑

n=−1

tr(g|W \
n)qn,(7.22)

so that Ug(τ) = q−1 +
∑

n>0

∑194
i=1 ni(n)χi(g)qn (cf. (7.21)). Combining (7.18), (7.20) and

(7.21), together with the definitions (3.2) of Tg and (7.22) of Ug, we obtain

Tg(τ) = q−1 (1− q)
(q)∞

+
∑
n>0

qn
1

(q)∞

194∑
i=1

ni(n)χi(g),(7.23)

or equivalently,

Ug(τ) = (q)∞Tg(τ) + 1(7.24)

for all g ∈M. (This computation also appears in [130].)
In §8 we will use (7.24) to determine the asymptotic behavior of the ni(n) (cf. Theorem

8.1), and thus the statistics of black hole states, at ` = 16G, in the conjectural chiral
three-dimensional gravity theory dual to V \.
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Remark. Note that we may easily construct modules for V ×M satisfying the extremal
condition (6.8), for each positive integer m, by considering direct sums of the monster
modules V (−m) constructed in Proposition 7.2. A very slight generalization of the argu-
ment just given will then yield formulas for the graded traces of monster elements on
the corresponding Virasoro highest weight spaces. Since it has been shown [115, 138]
that such modules cannot admit vertex operator algebra structure, we do not pursue this
here.

8. Monstrous Moonshine’s Distributions

We now address the problem of determining exact formulas and asymptotic distribu-
tions of irreducible components. This work will rely heavily on the modularity of the
underlying McKay–Thompson series (i.e. Theorems 3.3 and 7.1).

We prove formulas for the multiplicities mi(−m,n) and ni(n) which in turn imply the
following asymptotics.

Theorem 8.1. If m is a positive integer and 1 ≤ i ≤ 194, then as n→ +∞ we have

mi(−m,n) ∼ dim(χi)|m|1/4√
2|n|3/4|M|

· e4π
√
|mn|

ni(n) ∼
√

12 dim(χi)

|24n+ 1|1/2|M|
· e

π
6

√
23|24n+1|

These asymptotics immediately imply that the following limits are well-defined

δ (mi(−m)) := lim
n→+∞

mi(−m,n)∑194
i=1 mi(−m,n)

δ (ni) := lim
n→+∞

ni(n)∑194
i=1 ni(n)

.

(8.1)

Corollary 8.2. In particular, we have that

δ (mi(−m)) = δ (ni) =
dim(χi)∑194
j=1 dim(χj)

=
dim(χi)

5844076785304502808013602136
.

We illustrate these asymptotics explicitly, for χ1, χ2, and χ194, in the case that m = 1,
in Table 1, where we let δ (mi(−m,n)) denote the proportion of components correspond-

ing to χi in V
(m)
n .
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Table 1.

n δ (m1(−1, n)) δ (m2(−1, n)) · · · δ (m194(−1, n))
-1 1 0 · · · 0
0 0 0 · · · 0
1 1/2 1/2 · · · 0
2 1/3 1/3 · · · 0
...

...
...

...
...

40 4.011 . . .× 10−4 2.514 . . .× 10−3 · · · 0.00891. . .
60 2.699 . . .× 10−9 2.732 . . .× 10−8 · · · 0.04419. . .
80 4.809 . . .× 10−14 7.537 . . .× 10−13 · · · 0.04428. . .
100 4.427 . . .× 10−18 1.077 . . .× 10−16 · · · 0.04428. . .
120 1.377 . . .× 10−21 5.501 . . .× 10−20 · · · 0.04428. . .
140 1.156 . . .× 10−24 1.260 . . .× 10−22 · · · 0.04428. . .
160 2.621 . . .× 10−27 3.443 . . .× 10−23 · · · 0.04428. . .
180 1.877 . . .× 10−28 3.371 . . .× 10−23 · · · 0.04428. . .
200 1.715 . . .× 10−28 3.369 . . .× 10−23 · · · 0.04428. . .
220 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .
240 1.711 . . .× 10−28 3.368 . . .× 10−23 · · · 0.04428. . .

...
...

...
...

∞ 1
5844076785304502808013602136

196883
5844076785304502808013602136

· · · 258823477531055064045234375
5844076785304502808013602136

The precise values given in the bottom row of Table 1 admit the following decimal
approximations:

δ (m1(−m)) =
1

5844076785304502808013602136
≈ 1.711 . . .× 10−28

δ (m2(−m)) =
196883

5844076785304502808013602136
≈ 3.368 . . .× 10−23

δ (m194(−m)) =
258823477531055064045234375

5844076785304502808013602136
≈ 4.428 . . .× 10−2

(8.2)

Before explaining the proof of Theorem 8.1 we describe an application to the compu-
tation8 of quantum dimensions. Suppose that V is a vertex operator algebra and M is a
V -module such that the graded-dimension functions ZV and ZM are defined (cf. (4.2)).

8We are grateful to the referee for suggesting this.



28 JOHN F. R. DUNCAN, MICHAEL J. GRIFFIN AND KEN ONO

Then the quantum dimension of M relative to V is defined by setting

qdimV M := lim
y→0

ZM(iy)

ZV (iy)
(8.3)

(for y real and positive), assuming the limit exists. (Cf. §3.1 of [76].)
Dong–Mason initiated a vertex algebraic quantum Galois theory in [82]. (Cf. also

[78, 83, 128].) In this theory, inclusions of vertex operator algebras take on the role
played by inclusions of fields in the classical setting. It is established in [76] that the
quantum dimension qdimU V , for U a sub vertex operator algebra of V , serves as the
quantum analogue of the relative dimension dimE F of a field F over a subfield E.

Write V M for the fixed points of the action of M on V \. Then V M is a sub vertex
operator algebra of V \, called the monster orbifold. Using Theorem 8.1, together with a
result from [76], we will compute the quantum dimensions of the monster orbifold. To
formulate this precisely, note that, according to the main theorem of [78], we have

V \ '
194⊕
i=1

V M
i ⊗Mi,(8.4)

as V M×M-modules, for some V M-submodules V M
i in V \, where Mi denotes an irreducible

module for M with character χi, as in (7.15).

Corollary 8.3. We have qdimV M V M
i = χi(e). In particular, the quantum dimension of

V M
i relative to V M exists, for all 1 ≤ i ≤ 194.

Proof. Recall (cf. (4.2)) that ZV M
i

(τ) is the function obtained by substituting q = e2πiτ in

dim∗ V
M
i =

∑
n(V M

i )nq
n, assuming this series converges. Note that V M = V M

1 . According
to Proposition 3.6 of [76], if the limit

di := lim
n→∞

dim(V M
i )n

dim(V M
1 )n

(8.5)

exists, then the quantum dimension of V M
i relative to V M

1 also exists, and equals di.
Comparing with (7.15) we see that dim(V M

i )n = mi(−1, n). Applying Theorem 8.1 we
obtain di = χi(e), and this completes the proof. �

Note that Corollary 8.3 confirms a special case of Conjecture 6.7 of [76]. It would
be interesting to see how generally this method can be applied, to the computation of
quantum dimensions of orbifolds V G, where V is a vertex operator algebra and G is a
group of automorphisms of Aut(G). (See also Problem 10.11.)

8.1. The modular groups in monstrous moonshine. To obtain exact formulas, we
begin by recalling the modular groups which arise in monstrous moonshine. Suppose
Γ∗ < GL2(R) is a discrete group which is commensurable with SL2(Z). If Γ∗ defines a
genus zero quotient of H, then the field of modular functions which are invariant under
Γ∗ is generated by a single element, the principal modulus (cf. (3.4)). Theorem 3.6
implies that the Tg (defined by (3.2)) are principal moduli for certain groups Γg. We can
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describe these groups in terms of groups Eg which in turn may be described in terms of
the congruence subgroups

(8.6) Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

and the Atkin–Lehner involutions We for Γ0(N) given by

(8.7) We :=

(
ae b
cN de

)
,

where e is an exact divisor of N (i.e. e|N , and (e,N/e) = 1), and a, b, c, and d are
integers chosen so that We has determinant e.

Following Conway–Norton [59] and Conway–McKay–Sebbar [58], we denote the groups
Eg by symbols of the form Γ0(N |h) + e, f, . . . (or simply N |h+ e, f, . . . ), where h divides
(N, 24), and each of e, f, etc. exactly divide N/h. This symbol represents the group

Γ0(N |h) + e, f, · · · :=
(

1/h 0
0 1

)
〈Γ0(N/h),We,Wf , . . . 〉

(
h 0
0 1

)
,

where We,Wf , etc. are representative of Atkin–Lehner involutions on Γ0(N/h). We use
the notationWg := {1, e, f, . . . } to denote this list of Atkin–Lehner involutions contained
in Eg. We also note that Γ0(N |h) + e, f, . . . contains Γ0(Nh).

The groups Eg are eigengroups for the Tg, so that if γ ∈ Eg, then Tg(γτ) = σg(γ)Tg,
where σg is a multiplicative group homomorphism from Eg to the group of h-th roots of
unity. Conway and Norton [59] give the following values for σg evaluated on generators
of N |h+ e, f, . . . .

Lemma 8.4 (Conway–Norton). Assuming the notation above, the following are true:

(a) σg(γ) = 1 if γ ∈ Γ0(Nh)
(b) σg(γ) = 1 if γ is an Atkin–Lehner involution of Γ0(Nh) inside Eg

(c) σg(γ) = e
−2πi
h if γ =

(
1 1/h
0 1

)
(d) σg(γ) = e−λg

2πi
h if γ =

(
1 0
N 1

)
,

where λg in (d) is −1 if N/h ∈ Wg, and +1 otherwise.

This information is sufficient to properly describe the modularity of the series T
(−m)
g (τ)

on Eg. In section 8.4, we give an explicit procedure for evaluating σg. The invariance
group Γg, denoted by Γ0(N ||h) + e, f, . . . (or by the symbol N ||h + e, f, . . . ), is defined
as the kernel of σg. A complete list of the groups Γg can be found in the Appendix (§A)
of this paper, or in table 2 of [59].

Theorems 3.3 and 7.1 are summarized by the following uniform statement.
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Theorem 8.5. Let g ∈ M and m ≥ 1. Then T
(−m)
g is the unique weakly holomorphic

modular form of weight zero for Γg that satisfies T
(−m)
g = q−m + O(q) as τ approaches

the infinite cusp, and has no poles at any cusps inequivalent to the infinite one.

Remark. A weakly holomorphic modular form is a meromorphic modular form whose
poles (if any) are supported at cusps.

8.2. Harmonic Maass forms. Maass–Poincaré series allow us to obtain formulas for
weakly holomorphic modular forms and mock modular forms. We begin by briefly re-
calling the definition of a harmonic Maass form of weight k ∈ 1

2
Z and multiplier ν (a

generalization of the notion of a Nebentypus). If τ = x+ iy with x and y real, we define
the weight k hyperbolic Laplacian by

(8.8) ∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
,

and if γ =

(
a b
c d

)
∈ SL2(Z), define

(γ : τ) := (cτ + d).

Suppose Γ is a subgroup of finite index in SL2(Z) and 3
2
≤ k ∈ 1

2
Z. Then a real analytic

function F (τ) is a harmonic Maass form of weight k on Γ with multiplier ν if:

(a) The function F (τ) satisfies the modular transformation with respect to the weight
k slash operation,

F (τ)|kγ := (γ : τ)−kF (γτ) = ν(γ)F (τ)

for every matrix γ ∈ Γ, where if k ∈ Z + 1
2
, the square root is taken to be the

principal branch. In particular, if ν is trivial, then F is invariant under the action
of the slash operator.

(b) We have that ∆kF (τ) = 0,
(c) The singularities of F (if any) are supported at the cusps of Γ, and for each cusp

ρ there is a polynomial PF,ρ(q
−1) ∈ C[q−1/tρ ] and a constant c > 0 such that

F (τ)− PF,ρ(e−2πiτ ) = O(e−cy) as τ → ρ from inside a fundamental domain. Here
tρ is the width of the cusp ρ.

Remark. The polynomial PF,ρ above is referred to as the principal part of F at ρ. In
certain applications, condition (c) of the definition may be relaxed to admit larger classes
of harmonic Maass forms. However, for our purposes we will only be interested in those
satisfying the given definition, having a holomorphic principal part.

We denote the complex vector space of such functions by Hk(Γ, ν), and note that in
order for Hk(Γ, ν) to be nonzero, ν must satisfy (γ : δτ)k(δ : τ)kν(γ)ν(δ) = (γδ : τ)kν(γδ)
for every γ, δ ∈ Γ.

Let S(Γ) denote some fixed complete set of inequivalent representatives of the cusps of

Γ. For each representative ρ = α
γ

with (α, γ) = 1, fix a matrix Lρ =

(
−δ β
γ −α

)
∈ SL2(Z)
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so that ρ = L−1
ρ ∞. Following Rankin [206], let tρ be the cusp width and let κρ be the

cusp parameter, defined as the least nonnegative integer so that ν(LρT
tρL−1

ρ ) = e2πiκρ ,

where T :=

(
1 1
0 1

)
. The stabilizer of ρ in Γ is given by Γρ := 〈±T tρ〉 , so for example

Γ∞ = 〈±T 〉. Given F (τ) ∈ H2−k(Γ, ν), we refer to Fρ(τ) := F (τ)|2−kLρ as the expansion
of F at the cusp ρ. We note that this expansion depends on the choice of Lρ. These facts
imply that the expansion of Fρ can be given as a Fourier series of the form

Fρ(τ) =
∑
n

a(n, y)e2πix(n+κρ)/tρ .

More precisely, we have the following. The Fourier expansion of harmonic Maass forms
F at a cusp ρ (see Proposition 3.2 of [31]) splits into two components. As before, we let
q := e2πiτ .

Lemma 8.6. If F (τ) is a harmonic Maass form of weight 2−k for Γ where 3
2
≤ k ∈ 1

2
Z,

and if ρ is a cusp of Γ, then

Fρ(τ) = F+
ρ (τ) + F−ρ (τ)

where F+
ρ is the holomorphic part of Fρ, given by

F+
ρ (τ) :=

∑
n�−∞

c+
F,ρ(n)q(n+κρ)/τρ ,

and F−ρ is the nonholomorphic part, given by

F−ρ (τ) +
∑
n<0

c−Fρ(n)Γ(k − 1, 4πy|(n+ κρ)/tρ|)q(n+κρ)/tρ .

By inspection, we see that weakly holomorphic modular forms are themselves harmonic
Maass forms. In fact, under the given definition, all harmonic Maass forms of positive
weight are weakly holomorphic. On the other hand, if the weight is non-positive, then
the space of harmonic Maass forms may be larger than the space of weakly holomorphic
modular forms. However, as with the weakly holomorphic modular forms, a harmonic
Maass form is uniquely defined by its principal parts at all cusps. This is clear if the form
is weakly holomorphic. If the nonholomorphic part is non-zero, we have the following
lemma which follows directly from the work of Bruinier and Funke [31].

Lemma 8.7. If F ∈ H2−k(Γ0(N)) has the property that F− 6= 0, then the principal part
of F is nonconstant for at least one cusp.

Sketch of the Proof. Bruinier and Funke define a pairing {•, •} on harmonic weak Maass

Forms. The particular quantity {2iyk ∂
∂τ
F , F} can be described in terms of either a

Petersson norm, or in terms of products of coefficients of the principal part of F with
coefficients of the nonholomorphic part. Since the Petersson norm is non-zero, at least
one coefficient of the principal part is also non-zero. �
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Hence, if F and G are harmonic Maass forms of non-positive weight whose principal
parts are equal at all cusps, then F − G is holomorphic and vanishes at cusps, and
therefore identically 0.

8.3. Maass–Poincaré series. The Maass–Poincaré series define a basis for a space of
harmonic Maass forms and provide exact formulas for their coefficients. The following
construction of the Maass–Poincaré series follows the method and notation of Bringmann
and the third author [26] which builds on the early work of Rademacher, followed by more
contemporary work of Fay, Niebur, among many others [98, 188, 189]. The Poincaré series
we construct in this section are modular for congruence subgroups Γ0(N) which we will
then use to construct the McKay–Thompson series. Although we could follow similar
methods to construct Poincaré series for the groups Γg directly, we restrict our attention
to these groups since the congruence subgroups Γ0(N) are more standard.

For s ∈ C, w ∈ R \ {0}, and k ≥ 3/2, k ∈ 1
2
Z, let

(8.9) Ms(w) := |y|
k
2
−1Msign(w)(1−k/2),s− 1

2
(|w|),

where Mν,µ(z) is the M -Whittaker function which is a solution to the differential equation

∂2u

∂z2
+

(
−1

4
+
ν

z
+

1
4
− µ2

z2

)
u = 0,

and (here and throughout this paper) τ = x+ iy. Using this function, let

(8.10) φs(τ) :=Ms(4πy)e2πix.

Given a positive integer m and a cusp ρ, Maass–Poincaré series provide a form with
principal part equal to q(−m+κρ)/tρ plus a constant at the cusp ρ, and constant at all other
cusps, thereby forming a basis for H2−k(Γ, ν).

Suppose m > 0 and L ∈ SL2(Z) with ρ = L−1∞. Then we have the Maass–Poincaré
series

(8.11) PL(τ,m,Γ, 2− k, s, ν) :=
∑

M∈Γρ\Γ

φs

(
−m+κρ

tρ
· L−1Mτ

)
(L−1 : Mτ)2−k(M : τ)2−kν(M)

.

It is easy to check that φs(τ) is an eigenfunction of ∆2−k with eigenvalue

s(1− s) +
k2 − 2k

4
.

The right hand side of (8.11) converges absolutely for <(s) > 1, however Bringmann and
the third author establish conditional convergence when s ≥ 3/4 [26], giving Theorem 8.8
below. The theorem is stated for the specific case Γ = Γ0(N) for some N and k ≥ 3/2,
in which case we modify the notation slightly and define

(8.12) PL(τ,m,N, 2− k, ν) :=
1

Γ(k)
PL(τ,m,Γ0(N), 2− k, k

2
, ν)
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In the statement of the theorem below, Kc is a modified Kloosterman sum given by
(8.13)

Kc(2− k, L, ν,m, n) :=
∑

0≤a<ctρ
a≡− c·(α,N)

αγ
(mod N

(γ,N)
)

ad≡1 (mod c)

(S : τ)2−k exp

(
2πi

(
a· (−m+κρ)

tρ
+d· (n+κ∞)

t∞
c

))
(L−1 : LSτ)2−k(LS : τ)2−kν(LS)

,

where S =

(
a b
c d

)
∈ SL2(Z). If ν is trivial, we omit it from the notation. We also have

that δL,S(m) is an indicator function for the cusps ρ = L−1∞ and µ = S−1∞ given by

δL,S(m) :=

{
ν(M)−1e

2πir
−m+κρ
tρ if M = LT rS−1 ∈ Γ0(N),

0 if µ 6∼ ρ in Γ0(N).

Using this notation, we have the following theorem which gives exact formulas for the
coefficients and principal part of PL(τ,m,N, 2−k, ν), which is a generalization of Theorem
3.2 of [26].

Theorem 8.8. Suppose that 3
2
≤ k ∈ 1

2
Z, and suppose ρ = L−1∞ is a cusp of Γ0(N).

If m is a positive integer, then PL(τ,m,N, 2− k, ν) is in H2−k(Γ0(N), ν). Moreover, the
following are true:

(1) We have

P+
L (τ,m,N, 2− k, ν) = δρ,I(m) · q−m+κ∞ +

∑
n≥0

a+(n)qn.

Moreover, if n > 0, then a+(n) is given by

−ik2π
∣∣∣∣ −m+ κρ
tρ(n+ κ∞)

∣∣∣∣ k−1
2 ∑

c>0
(c,N)=(γ,N)

Kc(2− k, L, ν,−m,n)

c
· Ik−1

(
4π

c

√
|−m+ κρ| |n+ κ∞|

tρ

)
,

where Ik is the usual I-Bessel function.
(2) If S ∈ SL2(Z), then there is some c ∈ C so that the principal part of PL(τ,m,N, 2−

k) at the cusp µ = S−1∞ is given by

δL,S(m)q
−m+κρ
tρ + c

Remark. We shall use Theorem 8.8 to prove Theorem 8.1. We note that one could prove
Theorem 8.1 without referring to the theory of Maass–Poincaré series. One could make
use of ordinary weakly holomorphic Poincaré series. However, we have chosen to use
Maass–Poincaré series and the theory of harmonic Maass forms because these results
are more general, and because of the recent appearance of harmonic Maass forms in the
theory of umbral moonshine (see §9).
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Sketch of the proof. Writing ρ = α
γ
, Bringmann and the third author prove this theorem

for the case that γ | N and (α,N) = 1, along with the assumption that µ and ρ are in
a fixed complete set of inequivalent cusps, so that δµ,ρ = 1 or 0. This general form is
useful to us particularly since it works equally well for the cusps ∞ with L taken to be

the identity, and for 0 with L taken to be

(
0 −1
1 0

)
.

Here and for the remainder of the paper we let SN denote any complete set of inequiv-
alent cusps of Γ0(N), and for each ρ ∈ SN , we fix some Lρ with ρ = L−1

ρ ∞. Rankin
notes [206] (Proof of Theorem 4.1.1(iii)) that given some choice of SN , each right coset
of Γ0(N)\ SL2(Z) is in Γ0(N) · LρT r for some unique ρ ∈ SN . Moreover, the r in the
statement is unique modulo tρ, so the function δL,S(m) given above is well-defined on all
matrices in SLq(Z).

In the proof given by Bringmann and the third author, the sum of Kloosterman sums∑
c>0

(c,N)=(γ,N)

Kc(2− k, L, ν,−m,n)

c
. . . is written as a sum over representatives of the double

coset Γρ\L−1Γ0(N)/Γ∞ (omitting the identity if present). Following similar arguments,
but without the assumptions on α and γ, we find the indices of summation given in (8.13)
and Theorem 8.8. As in their case, we find that the principal part of PLρ(τ,m,N, 2−k) at

a cusp µ is constant if µ 6∼ ρ and is δLρ,Lµq
−m
tρ + c for some constant if µ = ρ. Therefore,

if µ is a cusp with Lµ = M−1LρT
r for some M ∈ Γ0(N, ), then the principal part of

PLρ(τ,m,N, 2− k, ν) at µ is clearly ν(M)−1e
2πir−m+κ

tρ q
−m+κρ
tρ + c. �

Since harmonic Maass forms with a nonholomorphic part have a non-constant principal
part at some cusp, we have the following theorem.

Theorem 8.9. [26, Theorem 1.1] Assuming the notation above, if 3
2
≤ k ∈ 1

2
Z, and

F (τ) ∈ H2−k(Γ0(N), ν) has principal part Pρ(τ) =
∑

m≥0 aρ(−m)q
−m+κρ
tρ for each cusp

ρ ∈ SN , then

F (τ) =
∑
ρ∈SN

∑
m>0

aρ(−m)Pρ(τ,m,N, 2− k, ν) + g(τ),

where g(τ) is a holomorphic modular form. Moreover, we have that c = 0 whenever
k > 2, and is a constant when k = 2.

8.4. Exact formulas for T
(−m)
g . Using Theorems 8.8 and 8.9, we can write exact for-

mulas for the coefficients of the T
(−m)
g provided we know its principal parts at all cusps

of Γ0(Nh). With this in mind, we now regard Tg as a modular function on Γ0(Nh) with
trivial multiplier. The location and orders of the poles were determined by Harada and
Lang [129].
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Lemma 8.10. [129, Lemma 7, 9] Suppose the Γg is given by the symbol N ||h + e, f...,

and let L =

(
−δ β
γ −α

)
∈ SL2(Z). Then Tg|0L has a pole if and only if

(
γ

(γ,h)
, N
h

)
= N

eh
,

for some e ∈ Wg (Note, here we allow e = 1). The order of the pole is given by (h,γ)2

eh2
.

Harada and Lang prove this lemma by showing that if u is an integer chosen such

uγ−α·(h,γ)
h

is integral and divisible by e and U =

(
e·h

(h,γ)
u
h

0 (h,γ)
h

)
, then LU is an Atkin–

Lehner involution We ∈ Eg. Therefore, we have that

(8.14) Tg|0L = σg(LU)Tg

(
(h, γ)2

eh2
τ − u · (h, γ)

eh2

)
.

Harada and Lang do not compute σg(LU), however we will need these values in order
to apply Theorem 8.9. Using Lemma 8.4, the following procedure allows us to compute
σg(M) for any matrix M ∈ Eg.

Given a matrix M ∈ Eg, we may write M as M =

(
ae b

h
cN de

)
with e ∈ Wg and

ade − bcN
eh

= 1. We may also write h = he · he, where he is the largest divisor of h

co-prime to e. Since cN
eh

is co-prime to both d and e, we may chose integers A,B, and C
(mod h) such that:

• cN
eh
A+ d is co-prime to he but is divisible by he,

• B ≡ −(eaA+ b)(cN
h
A+ ed)−1 (mod he) and BcN

eh
+ b ≡ 0 (mod he),

• C ≡ −c(cN
h
A+ ed)−1 (mod he), and C ≡ 0 (mod he).

A calculation shows that M̂ :=

(
1 B

h
0 1

)
M

(
1 A

h
0 1

)(
1 0
CN 1

)(
he 0
0 he

)
is an Atkin–

Lehner involution WE for Γ0(Nh) where E = e ·h2
e. By Lemma 8.4, this implies σg(M̂) =

1, and therefore

σg(M) = exp

(
2πi

h
(A+B + λgC)

)
.

Combined with Lemma 8.10, this leads us to the following proposition.

Proposition 8.11. Given a matrix L =

(
−δ β
γ −α

)
∈ SL2(Z), let u and U be chosen as

above, and define

εg(L) := σg (LU) · e2πi
u·(h,γ)
eh2 .

Then by (8.14), we have that

Tg|0L = εg(L)q−
(h,γ)2

eh2 +O(q).

Using this notation, we are equipped to find exact formulas for the T
(−m)
g .
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Theorem 8.12. Let g ∈M, with Γg = N |h+ e, f, . . . , and let SNh and Wg be as above.
if m and n are positive integers, then there is a constant c for which

T (−m)
g (τ) = c+

∑
e∈Wg

∑
α
γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)
mP+

α/γ(τ,m,Nh, 0).

The n-th coefficient of T
(−m)
g (τ) is given by∑

e∈Wg

∑
ρ=α

γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)
m2π

∣∣∣∣−mn · (h, γ)2

eh2

∣∣∣∣ 12 ×
∑
c>0

(c,Nh)=(γ,Nh)

Kc(0, L,−m,n)

c
· I1

(
4π

c

√∣∣∣∣−mn · (h, γ)2

eh2

∣∣∣∣
)
.

Proof. Every modular function is a harmonic Maass form. Therefore, the idea is to exhibit
a linear combination of Maass–Poincaré series with exactly the same principal parts at

all cusps as T
(−m)
g . By Lemma 8.7 and Theorem 8.9, this form equals T

(−m)
g up to an

additive constant. Lemma 8.4 (c) implies that the coefficients cg(n) of Tg are supported

on the arithmetic progression n ≡ −1 (mod h). The function T
(−m)
g is a polynomial in Tg,

and as such must be the sum of powers of Tg each of which is congruent to m (mod h).
Therefore, if M ∈ Γg, then T (−m)|0M = σg(M)mT (−m). Given L ∈ SL2(Z), let U be a
matrix as in (8.14) so that LU ∈ Γg. By applying Proposition 8.11, we find

T (−m)
g |0L = σg(LU)mT (−m)

g |0U−1 = εg(L)mq−m
(h,γ)2

eh2 +O(q).

Theorem 8.9, along with the observations that tρ = (h,γ)2

eh2
and κρ = 0 for every ρ = α

γ
=

L−1
ρ ∞, implies the first part of the theorem. The formula for the coefficients follows by

Theorem 8.8. �

8.5. Exact formulas for Ug up to a theta function. Following a similar process

to that in the previous section, we may construct a series Ûg(τ) = q−
23
24 + O(q

1
24 ) with

principal parts matching those of η(τ)Tg(τ) at all cusps. Then according to (7.24), the

difference q
1
24 (Ug−1)−Ûg is a weight 1

2
holomorphic modular form, which by a celebrated

result [211] of Serre–Stark, is a finite linear combination of unary theta functions. This

will not affect the asymptotics in Theorem 8.1. The functions Tg and Ûg differ primarily

in their weight, and in that Ûg has a non-trivial multiplier νη : M → η(Mτ)

(M :τ)1/2η(τ)
. They

also have slightly different orders of poles, which is accounted for by the fact that the

multiplier νη implies that κρ = tρ/24 at every cusp ρ for the Ûg, rather than 0 for the
Tg. The proof of the following theorem is the same as that of Theorem 8.12, mutatis
mutandis.
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Theorem 8.13. Let g ∈M, with Γg = N |h+ e, f, . . . , and let SNh and Wg be as above.
If m is a positive integer then

Ûg =
∑
e∈Wg

∑
ρ=α

γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)P+
Lρ

(τ, 1, Nh, 1/2, νη).

For n a non-negative integer, the coefficient of qn+ 1
24 in Ûg is given by

∑
e∈Wg

∑
ρ=α

γ
∈SNh

( γ
(γ,h)

,N
h )= N

eh

εg(Lρ)
1− i√

2
2π

∣∣∣∣∣− (h,γ)2

eh2
+ 1

24

n+ 1
24

∣∣∣∣∣
1
4

×

∑
c>0

(c,Nh)=(γ,Nh)

Kc(
1
2
, L, νη,−1, n)

c
· I 1

2

(
4π

c

√∣∣∣∣−(h, γ)2

eh2
+

1

24

∣∣∣∣ ∣∣∣∣n+
1

24

∣∣∣∣
)
.

This immediately admits the following corollary.

Corollary 8.14. Given the notation above, there is a weight 1
2

linear combination of

theta functions hg(τ) for which the coefficient qn in Ug(τ)− q− 1
24hg(τ) coincides with the

coefficient of qn+ 1
24 in Ûg, given explicitly in Theorem 8.13.

8.6. Proof of Theorem 8.1.

Proof of Theorem 8.1. Following Harada and Lang [129], we begin by defining the func-
tions

(8.15) T (−m)
χi

(τ) :=
1

|M|
∑
g∈M

χi(g)T (−m)
g (τ).

The orthogonality of characters imply that for g and h ∈M,

(8.16)
194∑
i=1

χi(g)χi(h) =

{
|CM(g)| if g and h are conjugate,

0 otherwise.

Here |CM(g)| is the order of the centralizer of g in M. Since the order of the centralizer
times the order of the conjugacy class of an element is the order of the group, (8.16) and
(8.15) together imply the inverse relation

T (−m)
g (τ) =

194∑
i=1

χi(g)T (−m)
χi

(τ).
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In particular we have that T
(−m)
e (τ) =

194∑
i=1

dim(χi)T
(−m)
χi

(τ), and therefore we can identify

the mi(−m,n) as the Fourier coefficients of the T
(−m)
χi (τ) =

∞∑
n=−m

mi(−m,n)qn.

Using Theorem 8.12, we obtain exact formulas for the coefficients of T
(−m)
χi (τ). Let

g ∈ M with Γg = Ng||hg + eg, fg, . . . . If m and n are positive integers, then the nth
coefficient is given exactly by

1

|M|
∑
g∈M

χi(g)
∑
e∈Wg

∑
α
γ
∈SNghg(

γ
(γ,hg)

,
Ng
hg

)
=
Ng
ehg

εg(Lρ)
m2π

∣∣∣∣−mn · (hg, γ)2

eh2
g

∣∣∣∣ 12

∑
c>0

(c,Nghg)=(γ,Nghg)

Kc(2− k, L, ν,−m,n)

c
· I1

(
4π

c

√∣∣∣∣−mn · (hg, γ)2

eh2
g

∣∣∣∣
)
,

where SNghg and Wg are given as above.
Using the well-known asymptotics for the I-Bessel function

Ik(x) ∼ ex√
2πx

(
1− 4k2 − 1

8x
+ . . .

)
,

we see that the formula for mi(−m,n) is dominated by the c = 1 term which appears
only for g = e (so that Ne = he = 1). This term yields the asymptotic

mi(−m,n) ∼ χi(e) · |m|1/4√
2n3/4|M|

· e4π
√
|mn|

as in the statement of the theorem.
The asymptotics for ni(n) follows similarly, using the formula

Uχi(τ) :=
1

|M|
∑
g∈M

χi(g)U (−m)
g (τ).

We note that the coefficients of the theta functions hg(τ) in Corollary 8.14 are bounded
by constants and so do not affect the asymptotics. This yields

ni(n) ∼
√

12 χi(e)

|24n+ 1|1/2|M|
· e

π
6

√
23|24n+1|

as in the theorem. �

8.7. Examples of the exact formulas. We conclude with a few examples illustrating
the exact formulas for the McKay–Thompson series. These formulas for the coefficients
generally converge rapidly. However the rate of convergence is not uniform and often
requires many more terms to converge to a given precision.



MOONSHINE 39

Example. We first consider the case that g is the identity element. Then we have
Γg = SL2(Z), which has only the cusp infinity. In this case Theorem 8.12 reduces to the
well known expansion

Tg = J(τ)− 744 = q−1 +
∑
n≥1

2π√
n
·
∑
c>0

Kc(∞,−m,n)

c
· I1

(
4π
√
n

c

)
qn.

Table 2 below contains several approximations made by bounding the size of the c term
in the summation.

Table 2.

n = 1 n = 5 n = 10
c ≤ 25 196883.661 . . . 333202640598.254 . . . 22567393309593598.047 . . .
≤ 50 196883.881 . . . 333202640599.429 . . . 22567393309593598.660 . . .
≤ 75 196883.840 . . . 333202640599.828 . . . 22567393309593599.369 . . .
≤ 100 196883.958 . . . 333202640599.827 . . . 22567393309593599.681 . . .
∞ 196884 333202640600 22567393309593600

Example. The second example we consider is g in the conjugacy class 4B. In this case
we have Γg = 4||2 + 2 ⊃ Γ0(8). The function Tg has a pole at each of the four cusps of
Γ0(8):

(1) The cusp ∞ has e = 1, width t = 1, and coefficient ε(L∞) = 1.
(2) The cusp 0 has e = 2, width t = 8, and coefficient ε(L0) = 1.
(3) The cusp 1/2 has e = 2, width t = 2, and coefficient ε(L1/2) = i.
(4) The cusp 1/4 has e = 1, width t = 1, and ε(L1/4) = −1.

Table 3 below contains several approximations as in Table 2.

Table 3.

n = 1 n = 5 n = 10
c ≤ 25 51.975 . . . 4760.372 . . . 0.107 . . .
≤ 50 52.003 . . . 4759.860 . . . 0.117 . . .
≤ 75 52.041 . . . 4760.066 . . . 0.092 . . .
≤ 100 51.894 . . . 4760.049 . . . 0.040 . . .
∞ 52 4760 0

9. Umbral Moonshine

In this penultimate section, we review the recently discovered, and rapidly developing
field of umbral moonshine.
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9.1. K3 Surfaces. Eguchi–Ooguri–Tachikawa reignited the field of moonshine with their
2010 observation [94] that dimensions of representations of the largest Mathieu group,
M24, occur as multiplicities of superconformal algebra characters in the K3 elliptic genus.

To formulate their observation more precisely, recall that a complex K3 surface is a com-
pact connected complex manifold M of dimension 2, with Ω2

M ' OM and H1(M,OM) =
0. (See [10, 11] for introductory accounts.) Following Witten [167, 231], the elliptic genus
of a complex manifold M of dimension d is defined to be

ZM :=

∫
M

ch(Eq,y) td(M),(9.1)

where td(M) is the Todd class of M , and ch(Eq,y) is the Chern character of the formal
power series

Eq,y = y
d
2

∞⊗
n=1

(∧
−y−1qn−1

TM ⊗
∧
−yqn

T ∗M ⊗
∨

qn
TM ⊗

∨
qn
T ∗M

)
,(9.2)

whose coefficients are virtual vector bundles, obtained as sums of tensor products of
the exterior and symmetric powers of the holomorphic tangent bundle TM , and its dual
bundle T ∗M . (Cf. also §1 of [123] or Appendix A of [72].) In (9.2) we interpret

∨
tE

in direct analogy with
∧
tE (cf. (3.13)), replacing exterior powers ∧kE with symmetric

powers ∨kE.
Since a complex K3 surface M has trivial canonical bundle, and hence vanishing first

Chern class, its elliptic genus is a weak Jacobi form ZM(τ, z) of weight zero and index
dim(M)/2 = 1—see [123] or [137] for proofs of this fact—once we set q = e(τ) and
y = e(z). This means9 that ZM(τ, z) is a holomorphic function on H× C, satisfying

ZM(τ, z) = e

(
−cz2

cτ + d

)
ZM

(
aτ + b

cτ + d
,

z

cτ + d

)
= e(λ2τ + 2λz)ZM(τ, z + λτ + µ)

(9.3)

for ( a bc d ) ∈ SL2(Z) and λ, µ ∈ Z, with a Fourier expansion ZM(τ, z) =
∑

n,r c(n, r)q
nyr

such that c(n, r) = 0 whenever n < 0.
It is known that ZM(τ, z) specializes to the Euler characteristic χ(M) = 24 when

z = 0 (cf. e.g. [123]). The space of weak Jacobi forms of weight zero and index one is
one-dimensional (cf. [97]), so ZM is independent of the choice of M . In fact, we have

ZM(τ, z) = 8

(
θ2(τ, z)2

θ2(τ, 0)2
+
θ3(τ, z)2

θ3(τ, 0)2
+
θ4(τ, z)2

θ4(τ, 0)2

)
,(9.4)

9See [67] or [97] for more on Jacobi forms, including the general transformation formula in case of
weight different from zero or index different from one.
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where the θi(τ, z) are the usual Jacobi theta functions:

θ2(τ, z) :=
∑
n∈Z

yn+1/2q(n+1/2)2/2 = y1/2q1/8
∏
n>0

(1 + y−1qn−1)(1 + yqn)(1− qn)

θ3(τ, z) :=
∑
n∈Z

ynqn
2/2 =

∏
n>0

(1 + y−1qn−1/2)(1 + yqn−1/2)(1− qn)

θ4(τ, z) :=
∑
n∈Z

(−1)nynqn
2/2 =

∏
n>0

(1− y−1qn−1/2)(1− yqn−1/2)(1− qn).

(9.5)

In Witten’s original analysis [167, 231] the elliptic genus ZM is the graded trace of an
integer-valued operator on a Hilbert space arising from a supersymmetric nonlinear sigma
model on M . In the case that M is a K3 surface—see [3, 4] for analyses of the sigma
models associated to K3 surfaces—it is expected that the corresponding Hilbert space
admits an unitary action by the (small) N = 4 superconformal algebra (cf. [96]). At least
this is known for some special cases, so (9.4) can be written as an integer combination
of the irreducible unitary N = 4 algebra characters. This leads (cf. [92, 95]) to an
expression

ZM(τ, z) = 24µ(τ, z) · θ1(τ, z)2

η(τ)3
+H(τ) · θ1(τ, z)2

η(τ)3
,(9.6)

where θ1(τ, z) is the Jacobi theta function

θ1(τ, z) := i
∑
n∈Z

(−1)nyn+1/2q(n+1/2)2/2 = iy1/2q1/8
∏
n>0

(1− y−1qn−1)(1− yqn)(1− qn),

(9.7)

µ(τ, z) denotes the Appell–Lerch sum defined by

µ(τ, z) :=
iy1/2

θ1(τ, z)

∑
n∈Z

(−1)n
ynqn(n+1)/2

1− yqn
,(9.8)

and q1/8H(τ) is a power series in q with integer coefficients,

H(τ) = −2q−1/8 + 90q7/8 + 462q15/8 + 1540q23/8 + 4554q31/8 + 11592q39/8 + . . . .(9.9)

The surprising observation of [94] is that each coefficient of a non-polar term appearing
in (9.9) is twice the dimension of an irreducible representation (cf. [57]) of the sporadic

simple group M24, discovered by Émile Mathieu [183, 184] more than 150 years ago.
(Generally, the coefficient of a positive power of q in (9.9) is some non-negative integer
combination of dimensions of representations of M24.) Thus H(τ) serves as an analogue
of J(τ) (cf. (2.6)) for M24, and

90 = 45 + 45(9.10)

is the Mathieu analogue of McKay’s monstrous observation (2.4).
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The analogy with monstrous moonshine was quickly taken up, with the determination
by Cheng [39], Eguchi–Hikami [93], and Gaberdiel–Hohenegger–Volpato [108, 109], of
Mathieu McKay–Thompson series

Hg(τ) = −2q−1/8 +
∑
n>0

tr(g|Kn−1/8)qn−1/8(9.11)

associated to a graded M24-module K =
⊕

n>0Kn−1/8, such that K7/8 is the sum of the
two 45-dimensional irreducible representations of M24, and K15/8 the sum of the two 231-
dimensional irreducible representations, etc. (See [43] for a detailed review of Mathieu
moonshine, and explicit descriptions of the Hg in particular.) We have the following
beautiful recent result of Gannon [43].

Theorem 9.1 (Gannon). There is a graded M24-module K =
⊕

n>0Kn−1/8 for which
(9.11) is true (given that the Hg are as described in [43]).

Remark. A concrete construction of K remains unknown.

The observer may ask: how were the Hg determined, if the module K is as yet un-
known? To explain this, note that the subscript in M24 is a reference to the fact that
M24 is distinguished amongst permutation groups: it may be characterized as the unique
proper subgroup of the alternating group A24 that acts quintuply transitively on 24 points
(cf. [66]). Write χg for the number of fixed points of an element g ∈M24, in this defining
permutation representation.

The first few terms of Hg are determined by the Eguchi–Ooguri–Tachikawa observation
on (9.9), for it indicates that the coefficient of q7/8 in Hg should be the trace of g on
the sum of the two 45-dimensional irreducible representations, and the coefficient of q15/8

should be the trace of g on the sum of the two 231-dimensional irreducible representations,
etc. To determine the remaining infinitely many terms, modularity may be used: the
series Hg, determined in [39, 93, 108, 109], have the property that

Zg(τ, z) := χgµ(τ, z) · θ1(τ, z)2

η(τ)3
+Hg(τ) · θ1(τ, z)2

η(τ)3
(9.12)

is a weak Jacobi form of weight zero and index one for ΓJ0 (N) := Γ0(N) n Z2 (with
non-trivial multiplier when χg = 0), where N = o(g) is the order of g, and Γ0(N) is as
in (8.6).

Thus Mathieu moonshine entails twisted, or twined versions (9.12) of the K3 elliptic
genus (9.4), but the single variable series Hg(τ) may also be studied in their own right,
as automorphic objects of a particular kind: it turns out that they are mock modular
forms10 of weight 1/2, for various groups Γ0(N), with shadows χgη(τ)3. This means that

10The notion of mock modular form has arisen recently, from Zwegers’ foundational work [239] on
Ramanujan’s mock theta functions [204, 205], and the subsequent contributions [25] and [237]. We refer
to [67, 195, 237] for nice introductions to the theory.
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the completed functions

Ĥg(τ) := Hg(τ) + χg
1

2
√
i

∫ ∞
−τ

η (−w)3 dw√
w + τ

(9.13)

are harmonic Maass forms of weight 1/2, with the same multiplier system as η(τ)−3 when
χg 6= 0. (In case χg = 0, i.e. when Hg is already a modular form, the multiplier is slightly
different. See e.g. [43]. The groups Γ0(o(g)) for which χg 6= 0 are characterized in [45].)

The function Hg(τ), being the holomorphic part of Ĥg(τ), is the mock modular form.
In contrast to the twined K3 elliptic genera Zg, the mock modular forms Hg are distin-

guished, in a manner directly analogous to the McKay–Thompson series Tg of monstrous
moonshine: it is shown in [44] that the Hg admit a uniform description in terms of
Rademacher sums, in direct analogy with Theorem 5.2. (We refer to [44] or the review
[43] for a precise statement of this result.) Since the coincidence between the monstrous
McKay–Thompson series and (normalized) Rademacher sums depends in a crucial way
upon the genus zero property of monstrous moonshine, as evidenced by Theorem 5.1, it is
natural to identify the Rademacher sum realization of the Hg as the Mathieu moonshine
counterpart to the genus zero property of monstrous moonshine.

As we have hinted above, the Rademacher sum property that distinguishes the Tg
and Hg does not hold for the weight zero Jacobi forms Zg (cf. (9.12)). A Poincaré
series approach to Jacobi forms is described in [24], using the foundations established in
[27, 28], and it is verified there that the Zg are not all realized in this way. On the other
hand, the main result of [24] is the Poincaré series construction of certain Maass–Jacobi
forms of weight one, naturally associated to elements of M24. Thus we can expect that
Jacobi forms of weight one, rather than the Zg of (9.12), will play an important role in
a comprehensive conceptual explanation of the Mathieu moonshine phenomenon.

Note that some of the functions Zg admit a geometric interpretation in terms of K3
surfaces. Namely, it has been established in [64] that if ḡ is a symplectic automorphism
of a K3 surface M then the natural ḡ-equivariant modification of (9.1) coincides with Zg,
for a suitable element g ∈M24. However, not all Zg arise in this way. Please see §9.4 for
a fuller discussion of this.

9.2. Niemeier Lattices. Vector-valued versions of the Rademacher sums that charac-
terize the Hg were used in [48] to identify Mathieu moonshine as a special case of six
directly similar correspondences, between conjugacy classes in certain finite groups and
distinguished (vector-valued) mock modular forms of weight 1/2. Since the mock mod-
ular forms arising seemed to be characterized by their shadows, this was dubbed umbral
moonshine in [48].

The conjectures of [48] were greatly expanded in [49], following an observation of
Glauberman (cf. the Acknowledgement in [49]), that the finite groups identified in [48]
also appear as automorphism groups of codes associated to deep holes in the Leech lattice
(cf. [60] or [57]).

To explain the significance of this, recall that an integral lattice is a free abelian group
L together with a symmetric bilinear form 〈· , ·〉 : L × L → Z. A lattice L is called
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positive-definite if 〈λ, λ〉 ≥ 0 for all λ ∈ L, with equality only when λ = 0. It is called
even if 〈λ, λ〉 ∈ 2Z for all λ ∈ L, and self-dual if L = L∗, for L∗ the dual of L,

L∗ := {µ ∈ L⊗Z Q | 〈λ, µ〉 ∈ Z⇐ λ ∈ L} .(9.14)

The even self-dual positive-definite lattices of rank 24 have been classified [190] (see also
[61, 228]) by Niemeier: there are 24 in total, up to isomorphism. They are characterized
by their root systems—i.e. the configurations of their vectors with square length equal
to 2—and the Leech lattice Λ (cf. §3) is the unique such lattice whose root system is
empty. We refer to the remaining 23 as the Niemeier lattices. The Niemeier root systems
are the root systems of the Niemeier lattices, and they are described explicitly as

A24
1 , A

12
2 , A

8
3, A

6
4, A

4
6, A

2
12,(9.15)

A4
5D4, A

2
7D

2
5, A

3
8, A

2
9D6, A11D7E6, A15D9, A17E7, A24,

D6
4, D

4
6, D

3
8, D10E

2
7 , D

2
12, D16E8, D24, E

4
6 , E

3
8 ,

(9.16)

in terms of the irreducible, simply-laced (i.e. ADE type) root systems. (See [63] or [140]
for more on root systems.)

In (9.15) and (9.16) we use juxtaposition as a shorthand for direct sum, so that A24
1

denotes 24 copies of the A1 root system, and A11D7E6 is shorthand for A11 ⊕D7 ⊕ E6,
etc. The subscripts indicate ranks. The Coxeter numbers of the ADE root systems are
given by

m(An) = n+ 1, m(Dn) = 2n− 2, m(E6) = 12, m(E7) = 18, m(E8) = 30,(9.17)

and one can check that the Niemeier root systems (9.15), (9.16) are exactly those unions
of ADE type root systems for which the total rank is 24, and the Coxeter number is
constant across irreducible components.

For X a Niemeier root system and NX the corresponding Niemeier lattice, define the
outer automorphism group of NX by setting

Out(NX) := Aut(NX)/WX ,(9.18)

where WX denotes the subgroup of Aut(NX) generated by reflections in root vectors.
Applying this construction to the Leech lattice, corresponding to X = ∅, we obtain the
Conway group,

Co0 := Aut(Λ),(9.19)

so named in light of Conway’s detailed description [53, 55] of its structure. A number
of the 26 sporadic simple groups appear as subgroups, or quotients of subgroups of Co0,
including the three sporadic simple Conway groups, Co1, Co2 and Co3. The Conway
group Co0 is a double cover of the first, and largest of these,

Co1 ' Aut(Λ)/{±Id}.(9.20)

Note that M24 is naturally a subgroup of Co0, and also Co1, for if {λi} ⊂ Λ is a set of 24
vectors such that 〈λi, λj〉 = 8δij, then the subgroup of Co0 that stabilizes this set {λi} is
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a copy of M24.

M24 ' {g ∈ Co0 | {g(λi)} ⊂ {λi}} .(9.21)

According to Conway–Parker–Sloane [60], the Niemeier root systems classify the deep-
est holes in the Leech lattice, being the points in Λ⊗ZR at maximal distance from vectors
in Λ. Moreover, this correspondence is strong enough that the Niemeier outer automor-
phism groups Out(NX) are also visible inside the Conway group, Co0. More precisely, if
x ∈ Λ⊗ZR is a deep hole, with corresponding Niemeier root system X according to [60],
then the stabilizer Aut(Λ, x) of x in Aut(Λ) has a normal subgroup Cx such that

Aut(Λ, x)/Cx ' Out(NX).(9.22)

The subgroup Cx even encodes a method for constructing NX , as is explained in detail in
[62], for if LX denotes the sub lattice of NX generated by roots, then NX is determined
by its image in (LX)∗/LX (cf. (9.14)) under the natural map NX → (LX)∗/LX . Write
CX for this subgroup of (LX)∗/LX , called the glue code of X in [62] (see also [61]). Then
Cx is isomorphic to CX , according to [62].

1→ CX ' Cx → Aut(Λ, x)→ Out(NX)→ 1(9.23)

Thus Out(NX) acts as automorphisms on the glue code CX , and Glauberman’s obser-
vation suggests an extension of the results of [48], whereby distinguished vector-valued
mock modular forms HX

g = (HX
g,r) are associated to elements g in the umbral groups

GX := Out(NX),(9.24)

for each Niemeier root system X. The realization of this suggestion is described in detail
in [49]. For X = A24

1 , the glue code CX is a copy of the extended binary Golay code (cf.
[63] or [203]), and GX is its full automorphism group, M24. Thus, from the Niemeier
root system perspective, Mathieu moonshine is the special case of umbral moonshine
corresponding to the root system A24

1 .
In (9.15) we have separated out the Niemeier root systems of the form Adn with d = 24/n

even. It is exactly these cases of umbral moonshine that are discussed in [48]. The original
umbral moonshine observation of Eguchi–Ooguri–Tachikawa stemmed from consideration
of the weight zero, index one weak Jacobi form ZM (cf. (9.4)), realized as the K3
elliptic genus. The analysis of [48] is, to some extent, similarly motivated, including the

attachment of a weight zero, index n weak Jacobi form Z
(n+1)
g (τ, z) to each g ∈ GX , for

each Niemeier root system X = Adn with d = 24/n even.
A notion of extremal Jacobi form is formulated in [48], motivated by the representation

theory of the N = 4 superconformal algebra, and it is proven11 there that the six functions

11The main step in the classification given in [48] is a demonstration that the existence of an extremal
Jacobi form of index m − 1 implies the vanishing of L(f, 1) for all new forms f of weight 2 and level
m, where L(f, s) is the Dirichlet series naturally attached to f (cf. e.g. §3.6 of [212]). At this point
one expects extremal Jacobi forms to be very few in number, on the strength of the Birch–Swinnerton-
Dyer conjecture (cf. [14, 230]), for example. This machinery is evidently quite powerful, and we may
anticipate further applications to umbral moonshine in the future.
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Z(n+1) := Z
(n+1)
e , for n ∈ {1, 2, 3, 4, 6, 12}, exhaust all examples. Thus the cases (9.15) of

umbral moonshine considered in [48] are distinguished from the point of view of Jacobi
forms of weight zero.

By contrast, there seems to be no natural way to associate weight zero Jacobi forms
to the Niemeier root systems not12 of the pure A-type, Adn. Rather, the mock modular
forms HX

g described in [49] naturally appear as the theta-coefficients of finite parts of

certain meromorphic Jacobi forms ψXg of weight 1 and index m,

ψXg (τ, z) = ψX,Pg (τ, z) +
∑

r (mod 2m)

HX
g,r(τ)θm,r(τ, z),(9.25)

where m = m(X) is the Coxeter number of any irreducible component of X (cf. (9.17)).
Here, meromorphic means that we allow poles in the functions z 7→ ψXg (τ, z), at torsion

points z ∈ Qτ + Q. The Weierstrass ℘ function

℘(τ, z) :=
1

z2
+

∑
ω∈Zτ+Z
ω 6=0

1

(z + ω)2
− 1

ω2
(9.26)

is a natural example (with weight two and index zero).
The decomposition (9.25) is described in detail in [49], following the general structural

results on meromorphic Jacobi forms established in [67, 239]. For now let us just mention
that the first summand on the right hand side is the polar part of ψXg , defined as in §8.2
of [67], and

θm,r(τ, z) :=
∑
k∈Z

y2km+rq(2km+r)2/4m(9.27)

evidently depends only on r modulo 2m.
A number of the meromorphic Jacobi forms attached to Niemeier root systems by

umbral moonshine also appear amongst the specific examples of [67], where the main
application is the computation of quantum degeneracies of black holes in certain string
theories. However, whilst some speculations are offered in §5.5 of [48], no direct relation-
ship between umbral moonshine and string theory has been formulated as yet.

We have seen in §9.1 that the mock modular forms attached to M24 by Mathieu
moonshine (i.e. umbral moonshine for X = A24

1 ) may be characterized as Rademacher
sums, and this serves as an umbral analogue of the principal modulus/genus zero property
of monstrous moonshine, on the strength of Theorem 5.1. It is natural to ask for an
extension of this result to all cases of umbral moonshine.

Conjecture 5.4 of [48] amounts to the prediction that vector-valued generalizations of
the Rademacher sums of [44] will recover the HX

g for X = Adn with d even (cf. (9.15)),
and Conjecture 3.2 of [50] is an extension of this to all Niemeier root systems X. Thus a
positive solution to Conjecture 3.2 of [50] will verify the umbral analogue of the principal

12The cases A3
8 and A24 do come with weight zero Jacobi forms attached, which are obtained via a

slight weakening of the notion of extremal Jacobi form formulated in [48]. Cf. §4.3 of [49].



MOONSHINE 47

modulus property of monstrous moonshine. So far, the Rademacher sum conjecture for
umbral moonshine is known to be true only in the case that X = A24

1 , but a program
to analyze the Rademacher sum conjecture for more general cases of umbral moonshine,
via the theory of Maass–Jacobi forms (cf. [27, 28]), has been initiated in [24].

A notion of optimal growth was formulated in §6.3 of [49], following the work [67],
with a view to extending Conjecture 5.4 of [48]. It is now known that this condition does
not uniquely determine the HX

g for general X (see [50] for a full discussion of this), but

all the HX
g serve as examples. With this in mind, it is interesting to note that many

of Ramanujan’s mock theta functions [204, 205] appear as components of the umbral
McKay–Thompson series HX

g . (Cf. §4.7 of [48] and §5.4 of [49].)

9.3. Modules. As we have explained above, the Rademacher sum property of umbral
moonshine is a natural counterpart to the principal modulus, or genus zero property of
monstrous moonshine (cf. §3), formulated in a detailed way by Conway–Norton [59].

The natural counterpart to Thompson’s conjecture, Conjecture 3.1, verified by the
Frenkel–Lepowsky–Meurman construction [103, 104, 105] of the moonshine module V \,
together with Borcherds’ work [18], is the following (cf. §6.1 of [49], and §2 of [50]).

Conjecture 9.2 (Cheng–Duncan–Harvey). For each Niemeier root system X, there is
a bi-graded GX-module

ǨX =
⊕
r∈IX

⊕
D∈Z

D=r2 (mod 4m)

ǨX
r,−D/4m,(9.28)

such that the vector-valued umbral McKay–Thompson series HX
g = (HX

g,r) is recovered13

from the graded trace of g on ǨX via

HX
g,r(τ) = −2q−1/4mδr,1 +

∑
D∈Z

D=r2 (mod 4m)

tr(g|ǨX
r,−D/4m)q−D/4m(9.29)

for r ∈ IX .

In (9.28) and (9.29), m = m(X) is the Coxeter number of any irreducible component
of X, as in (9.25). The HX

g,r satisfy HX
g,−r = −HX

g,r, so the umbral McKay–Thompson

series HX
g is determined by its components HX

g,r with 0 < r < m. If the highest rank
irreducible component of X is of type D or E then there are more symmetries amongst
the HX

g,r, and the definition of the set IX ⊂ Z/2mZ reflects this: if X has an A-type

component then IX := {1, 2, 3, . . . ,m−1}. If the highest rank component of X is of type

13In the original formulation, Conjecture 6.1 of [49], the function HX
g,r in (9.29) is replaced with 3HX

g,r

in the case that X = A3
8. It also predicted that ǨX

r,−D/4m is a virtual GX -module in case X = A3
8 and

D = 0. Recently, a modification of the specification of the HX
g for X = A3

8 has been discovered, which
leads to the simpler, more uniform formulation appearing here. We refer to [50] for a full discussion of
this.
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D then m = 2 mod 4, and IX := {1, 3, 5, . . . ,m/2}. The remaining cases are X = E4
6 ,

in which case IX := {1, 4, 5}, and X = E3
8 , for which IX := {1, 7}.

As mentioned in §9.1, the existence of the module ǨX for X = A24
1 has been proven

by Gannon [118]. More specifically, Gannon has shown that the coefficients of the non-
negative powers of q in HX

g for X = A24
1 are traces of elements of M24 on direct sums of

irreducible M24-modules. A priori, we might have needed C-linear combinations of such
traces in order to recover the HX

g,r.
In forthcoming work [86], the authors confirm the validity of Conjecture 9.2.

Theorem 9.3 (Duncan–Griffin–Ono). Conjecture 9.2 is true.

Theorem 9.3 serves, to a certain extent, as the umbral counterpart to Borcherds’ result,
Theorem 3.6. Indeed, the method of [86] may be used to give an alternative proof of the
existence of the M-module V \, for which the associated graded trace functions are the
normalized principal moduli of the genus zero groups Γg, identified by Conway–Norton
in [59].

Nonetheless, there is still work to be done, for in order to have a direct counterpart
to Theorem 3.6 we require concrete constructions of the ǨX . In the case of monstrous
moonshine, the construction of V \ due to Frenkel–Lepowsky–Meurman came equipped
with rich algebraic structure, ultimately leading to the notion of vertex operator algebra,
and powerful connections to physics. We can expect that a full explanation of the umbral
moonshine phenomena will require analogues of this for all the ǨX .

Just such an analogue for X = E3
8 has recently been obtained in [87], where a super

vertex operator algebra V X is constructed, together with an action of GX ' S3, such that
the components of the vector-valued mock modular forms HX

g = (HX
g,r) are recovered from

traces of elements of GX on canonically-twisted modules for V X . The main ingredient
in the construction of [87] is an adaptation of the familiar (to specialists) lattice vertex
algebra construction (cf. [15, 105]), to cones in indefinite lattices. The choice of cone is
in turn inspired by Zwegers’ work [240] on a particular pair of the fifth order mock theta
functions of Ramanujan.

In [47, 90] a different approach to the module problem is considered, whereby mero-
morphic Jacobi forms associated to the HX

g are recovered as graded traces on canonically-
twisted modules for certain super vertex algebras. In [90] constructions are given for the
ψXg of (9.25), for X ∈ {A8

3, A
6
4, A

4
6, A

2
12}. In [47] certain half-integral index analogues of

the ψXg are recovered, for X ∈ {D4
6, D

3
8, D

2
12, D24}.

As we will explain in more detail in the next section, recent work [41, 52] constructs
modules underlying assignments of vector-valued mock modular forms to the sporadic
simple groups M24, M23 and M22. Here, M23 denotes the maximal subgroup of M24

composed of elements fixing any given point in the defining permutation representation
(cf. §9.1), and M22 is obtained similarly from M23, as the subgroup stabilizing a point in
its natural permutation representation of degree 23. Although the mock modular forms
realized in [41, 52] are not directly related to the HX

g , it seems likely that the construction
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used therein holds important hints for future developments in the module problem for
umbral moonshine.

9.4. Sigma Models. Recall from §9.1 that Ω2
M ' OM for M a complex K3 surface. An

automorphism of M that induces the trivial action on H0(M,Ω2
M) is called symplectic. It

is a celebrated result of Mukai [187] (cf. also [163]), that the finite groups of symplectic
automorphisms of complex K3 surfaces are, up to isomorphism, precisely the subgroups
of M24 that have at least five orbits in the unique non-trivial permutation representation
on 24 points, including at least one fixed point.

Since a symplectic automorphism of a complex K3 surface M induces a supersym-
metry preserving automorphism of a sigma model attached to M (cf. §9.1), and since
it is the supersymmetry preserving automorphisms of a K3 sigma model that can be
used to twine the K3 elliptic genus (9.4), the problem of classifying the supersymme-
try preserving automorphism groups of nonlinear K3 sigma models was considered by
Gaberdiel–Hohenegger–Volpato in [110].

One might have anticipated that all supersymmetry preserving K3 sigma model auto-
morphism groups would be contained in M24, but this is not the case. Rather, the main
result of [110], being a quantum analogue of Mukai’s classification of finite symplectic
automorphism groups of K3 surfaces, is that the groups of supersymmetry preserving
automorphisms of K3 sigma models are, up to isomorphism, precisely the subgroups of
Co0 = Aut(Λ) (cf. (9.19)) that fix a sublattice of Λ with rank at least four.

Note that the results of [110] are obtained subject to certain conjectural assumptions
about the structure of the moduli space of K3 sigma models. Nonetheless, it seems fair
to conclude that the K3 sigma models do not furnish quite the right theoretical setting
for solving the mysteries of umbral moonshine. For not all of the M24-twinings (9.12) of
the K3 elliptic genus (9.4) arise as twinings defined by K3 sigma model automorphisms,
since, for example, there are elements of M24 (cf. (9.21)) that do not fix a rank four
lattice in the Leech lattice, Λ. (Cf. also, the last sentence of §9.1.)

That notwithstanding, we can expect to learn useful information about umbral moon-
shine from further investigation of K3 sigma models. The history of monstrous moonshine
provides a useful point of comparison: in advance of his proof of the Conway–Norton con-
jectures, Borcherds considered a certain BKM algebra (cf. §3) in [17], which was, at the
time, called the monster Lie algebra, although it turned out to be only indirectly con-
nected to the monster. The Lie algebra constructed in [17] is now known as the fake
monster Lie algebra (cf. §2 of [18]), and has found a number of applications outside
of moonshine. For example, the denominator function of the fake monster Lie algebra
(cf. Example 2 in §10 of [19]) is used to prove facts about families of K3 surfaces in
[21, 164, 236].

At the level of vertex operator algebras, the fake monster Lie algebra corresponds to
the lattice vertex algebra VΛ attached to the Leech lattice. This may be regarded as a
“fake” moonshine module, for it has exactly the same graded dimension as V \, up to the
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constant term,

dim∗ VΛ = J(τ) + 24.(9.30)

(Cf. (4.1).) There is no action of the monster on VΛ, although there is an action by
a group14 of the shape 224.Co0 = 224.(2.Co1) (cf. (9.20)), whereas the monster con-
tains a maximal subgroup with the shape (2.224).Co1. The Frenkel–Lepowsky–Meurman
construction of V \ takes VΛ as a main ingredient. (Cf. (3.6).)

It is striking that the Conway group Co0 = 2.Co1 plays a prominent role in so many
of the objects we have discussed: it is visible within the monster, and within the auto-
morphism group of VΛ. It serves for K3 sigma models as M24 does for K3 surfaces, as
discussed above, and all of the umbral moonshine groups (9.24) are visible within Co0,
according to (9.22).

Moreover, there is moonshine for the Conway group, in direct analogy with that for the
monster, in the sense that there is an assignment of normalized principal moduli T sg to
elements g ∈ Co0 which are realized as trace functions on a graded infinite-dimensional
Co0-module. A proof of this statement has recently appeared in [88].

To explain this, take g ∈ Co0, let {εi} be the eigenvalues associated to the action of g
on Λ⊗Z C, and define

T sg (τ) := q−1/2
∏
n>0

24∏
i=1

(1− εiqn−1/2) + χg,(9.31)

where

χg :=
∑
i

εi(9.32)

is the character value associated to the action of g on Λ⊗ZC. Then T sg (2τ) = q−1 +O(q)
is the normalized principal modulus for a genus zero group, according to Conway–Norton
[59] and Queen [199]. (See also [165].)

It has been demonstrated in [88] that the functions T sg are the graded traces attached to

the action of Co0 on a distinguished15 super vertex operator algebra, V s\ =
⊕∞

n=−1 V
s\
n/2.

T sg (τ) =
∞∑

n=−1

tr(zg|V s\
n/2)qn/2(9.33)

14Given groups A and B, say that a group G has the shape A.B, and write G = A.B, if G contains
a normal subgroup isomorphic to A such that G/A ' B. In this setting it is typical to write pn as a
shorthand for an elementary abelian p-group with pn elements.

15The super vertex operator algebra V s\ admits actions by both Co0 (cf. (9.19)) and the simple group
Co1 (cf. (9.20)). It’s construction as a Co1-module was sketched first in §15 of [104], described later in
§5 of [22], and subsequently studied in detail in [84]. The Co0-module structure on V s\ is mentioned
in [84], following [22], but it seems that the modular properties of the trace functions associated to the
Co0-action were not considered until [88].
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(In (9.33) we write z for the super space involution, acting as (−1)nId on V s\
n/2.) Thus the

super vertex operator algebra V s\ solves the Conway moonshine analogue of Thompson’s
Conjecture 3.1, and V s\ is the natural analogue of the moonshine module V \ for the
Conway group, Co0.

The Conway module V s\ is closely related to monstrous moonshine, for, in addition
to being directly analogous to V \, many of the discrete groups Γg < SL2(R), for g ∈ M,
also arise as invariance groups of principal moduli attached to Co0 via its action on V s\.
(Cf. [88].) On the other hand, V s\ enjoys a close connection to K3 sigma models, for it
is shown in [89] that the data defining a K3 sigma model gives rise to a bi-grading on a
distinguished, canonically-twisted16 V s\-module

V s\
tw =

⊕
n,r

(V s\
tw)n,r,(9.34)

such that the associated graded traces of compatible elements of Co0 are weak Jacobi
forms.

More specifically, following §2.1 of [110], we may regard the data of a K3 sigma model
as equivalent17 to a choice of positive-definite 4-space Π < II4,20 ⊗Z R (cf. (3.7)), such
that

δ ∈ Π⊥ ∩ II4,20 =⇒ 〈δ, δ〉 6= −2.(9.35)

Then the supersymmetry preserving automorphism group of the nonlinear sigma model
defined by Π is the group

GΠ := Aut(II4,20,Π),(9.36)

composed of orthogonal transformations of II4,20 that extend to the identity on Π, ac-
cording to §2.2 of [110]. One of the main results of [110] is that GΠ may be identified
with a subgroup of Co0.

The construction of [89] uses V s\
tw to attach a graded trace function

φg(τ, z) := −
∑
n,r

tr(zg|(V s\
tw)n,r)q

nyr(9.37)

to each pair (g,Π), where Π < II4,20 ⊗Z R satisfies (9.35), and g ∈ GΠ, and z is a certain

naturally defined involution on V s\
tw (analogous to the z in (9.33)). It is shown in [89] that

φg is a weak Jacobi form of weight zero and index one for ΓJ0 (N) (cf. (9.12)), for some N ,
for all choices of Π and g ∈ GΠ. Moreover, φg is found to coincide with the g-twined K3
elliptic genus associated to the sigma model defined by Π, for all the examples computed
in [110, 114, 229]. (These examples account for about half of the conjugacy classes of

16Twisted modules for vertex algebras are discussed in §4. In the case of a super vertex algebra there
is a canonically defined involution coming from the superspace structure, called the parity involution.
A module for a super vertex algebra that is twisted with respect to the parity involution is called
canonically-twisted.

17This convention excludes some interesting K3 sigma models, such as those considered in [51]. We
refer to [3, 4] for detailed discussions of K3 sigma model moduli.
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Co0 that fix a 4-space in Λ⊗Z R.) In particular, taking g = e in (9.37) recovers the K3
elliptic genus (9.4), but in the form

φe(τ, z) = −211 θ2(τ, z)2

θ2(τ, 0)2

∆(2τ)

∆(τ)
+

1

2

θ3(τ, z)2

θ3(τ, 0)2

∆(τ)2

∆(2τ)∆(τ/2)
− 1

2

θ4(τ, z)2

θ4(τ, 0)2

∆(τ/2)

∆(τ)
,(9.38)

where ∆(τ) := η(τ)24 = q
∏∞

n=1(1− qn)24.

Thus V s\
tw serves as a kind of universal object for K3 sigma models. This is interesting,

for generally it is difficult to construct the Hilbert spaces underlying a K3 sigma model,
and therefore difficult to compute the associated twined K3 elliptic genera, for instance,
for all but a few special examples.

In [141], Huybrechts has related the positive-definite 4-spaces Π < II4,20⊗ZR satisfying
(9.35) to pairs (X, σ), where X is a projective complex K3 surface, and σ is a stability
condition on the bounded derived category of coherent sheaves on X. In this way he has
obtained an alternative analogue of Mukai’s result [187], whereby symplectic automor-
phisms of K3 surfaces are replaced by symplectic derived autoequivalences. (The results
of [89] are formulated in this language.)

A number of the functions Zg (cf. (9.12)) arising in Mathieu moonshine are realized
as φg for some g ∈ Co0. So the construction of [89] relates V s\ to umbral moonshine, but
the connection goes deeper, for it is shown in [89] that a natural generalization of the
definition (9.37) recovers a number of the Jacobi forms attached to other root systems
of the form X = Adn (cf. §9.2), beyond the special case X = A24

1 . It is interesting to
compare this to the results of [51] (see also the precursor [134]), which demonstrate a
role for K3 surface geometry in all cases of umbral moonshine (i.e., for all the Niemeier
root systems), by considering sigma models attached to K3 surfaces admitting du Val
singularities. Indeed, many of the Jacobi forms computed in [51] appear also in [89].

From the discussion above we see that the Conway module V s\ provides evidence for
a deep connection between monstrous and umbral moonshine. Further support for the
notion that monstrous and umbral moonshine share a common origin is obtained in [196],
where the generalized Borcherds products of [30] are used to relate the trace functions of
monstrous and umbral moonshine directly.

We elaborate now upon the results of [41, 52], which, as mentioned at the end of
§9.3, fall outside of umbral moonshine as formulated in [49], but are nonetheless related.
Actually, these works are further applications of the Conway moonshine module V s\,
for in [41] the canonically-twisted V s\-module V s\

tw (cf. (9.34)) is equipped with module
structures for the N = 2 and N = 4 superconformal algebras, which in turn give rise
to an assignment of distinguished vector-valued mock modular forms to elements of the
sporadic simple Mathieu groups M23 and M22, respectively. This work furnishes the first
examples of concretely constructed modules for sporadic simple groups, such that the
associated graded trace functions define mock modular forms. The methods of [41] are
extended in [52], to the case of the Spin(7) algebra (a certain extension of the N = 1
superconformal algebra, cf. [13] and references therein) and vector-valued mock modular
forms for M24 are obtained. Interestingly, Conway’s sporadic groups Co2 and Co3, and
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the sporadic groups of McLaughlin and Higman–Sims (all rather larger than M24, or any
of the other umbral groups GX) also appear in the analysis of [41, 52].

As a further indication of the important role that K3 sigma models will play in illu-
minating umbral moonshine, we mention the interesting work [113, 218, 219, 220], which
seeks to explain the Mathieu moonshine observation by formulating a precise mechanism
for combining symmetries of distinct K3 sigma models into a single group. We note in
particular, that a fixed-point-free maximal subgroup of M24 is constructed in this way in
[220].

We conclude this section with references [42, 133, 134, 135, 156, 197, 234] to a number
of other occurrences of umbral groups in geometry and physics, all promising connections
to Mathieu moonshine, or umbral moonshine more generally. We also note the recent
work [40], which analyzes all cases of generalized umbral moonshine, thereby extending
the investigation of generalized Mathieu moonshine that was initiated in [112].

10. Open Problems

We conclude the article by identifying some open problems for future research that are
suggested by our results in §7 and §8, and the developments described in §9.

Problem 10.1. We have seen that the known connections between monstrous moon-
shine and physics owe much to the Frenkel–Lepowsky–Meurman construction of the
moonshine module V \, and its associated vertex operator algebra structure. Just as the
vertex operator algebra structure on V \ gives a strong solution to Thompson’s conjecture,
Conjecture 3.1, we can expect concrete constructions of the ǨX—whose existence is now
guaranteed thanks to Theorem 9.3—to be necessary for the elucidation of the physical
origins of umbral moonshine. As we have described in §9.3, progress on this problem
has been obtained recently in [47, 87, 90], and the related work [41] may also be useful,
in the determination of a general, algebraic solution to the module problem for umbral
moonshine.

Problem 10.2. Norton’s generalized moonshine conjectures were discussed in §4, and
generalized umbral moonshine has been investigated in [40, 112]. A special case of gen-
eralized moonshine for the Conway group is established in [88], but the full formulation
and proof of generalized Conway moonshine remains open. Given the close connections
between V s\ and umbral moonshine discussed in §9.4, it will be very interesting to deter-
mine the precise relationship between the corresponding generalized moonshine theories.
We can expect that the elucidation of these structures will be necessary for a full under-
standing of the role that umbral moonshine plays in physics.

Problem 10.3. As discussed in §9.2, the fact (cf. Theorem 5.2) that the McKay–
Thompson series of monstrous moonshine are realized as Rademacher sums admits con-
jectural analogues for umbral moonshine. (See Conjecture 3.2 of [50] for a precise for-
mulation.) So far this has been established only for X = A24

1 , corresponding to Mathieu
moonshine (cf. [44]), and the general case remains open. As explained in §9.2, a positive
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solution to Conjecture 3.2 of [50] will establish an umbral moonshine counterpart to the
principal modulus/genus zero property of monstrous moonshine.

Problem 10.4. As discussed above, in §5 and in §9.2, Rademacher sums play a crucial
role in both monstrous and umbral moonshine, by serving to demonstrate the distin-
guished nature of the automorphic functions arising in each setting. In the case of mon-
strous moonshine, the Rademacher sum property also indicates a potentially powerful
connection to physics, via three-dimensional gravity, as explained in §6. Thus it is an
interesting problem to formulate umbral moonshine analogues of the conjectures of [85],
discussed here in §§6,7.

Problem 10.5. Relatedly, it follows from the results of [85] that the McKay–Thompson
series T sg (cf. (9.33)), attached to elements g in the Conway group Co0 via its action

on V s\ (cf. §9.4), are also realized as Rademacher sums. That is, Theorem 5.2 general-
izes naturally to Conway moonshine. Thus it is natural to investigate the higher order
analogues V s(−m) of the super vertex operator algebra V s\, and the Conway group ana-
logues of the three-dimensional gravity conjectures of [85]. Some perspectives on this are
available in [138, 179, 233].

Problem 10.6. The notion of extremal vertex operator algebra is defined by (6.8).
So far the only known example is the moonshine module V \. As explained in §6, the
construction of a series of extremal vertex operator algebras, with central charges the
positive integer multiples of 24, would go a long way towards the construction of a chiral
three-dimensional quantum gravity theory. This problem also has a super analogue, cf.
[138].

Problem 10.7. The monster modules V (−m), defined in §7, cannot be vertex operator
algebras for m > 1, for an action of the Virasoro algebra would generate a non-zero
vector with non-positive eigenvalue for L(0)− c/24, and this would violate the condition∑

n dim(V
(−m)
n )qn = q−m + O(q). Nonetheless, we may ask: do the V (−m) admit vertex

algebra structure? Or, is there another natural algebraic structure, which characterizes
the monster group actions on the V (−m)?

Problem 10.8. Relatedly, V ×M-modules satisfying the extremal condition (6.8) may
be easily constructed from the monster modules V (−m), as is mentioned at the conclusion
of §7. What is the algebraic significance of these spaces? We know from [115, 138] that
they cannot admit vertex operator algebra structure compatible with the given V ×M
actions. Is there some other kind of algebraic structure which is compatible with this
symmetry?

Problem 10.9. The result of Corollary 8.2 implies that the V
(−m)
n and W \

n tend to direct
sums of copies of the regular representation of M, as n → ∞. This means that if we
write each homogeneous subspace of each module, particularly the moonshine module
V \, as the sum of a free part (free over the group ring of M) and a non-free part, then the
non-free part tends to 0 (relative to the free part) as n → ∞. Is there something to be
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learnt from an analysis of the non-free parts of V (−m), W \? As one can see from Table 8,
some irreducible representations of the monster feature more often in the non-free part
than others. We thank Bob Griess for posing this question.

Problem 10.10. It is a natural problem to generalize the methods employed in §8,
to determine the distributions of irreducible representations of the umbral groups GX

(cf. (9.24)) in the umbral moonshine modules ǨX (cf. (9.28)). Similarly, one may
also consider the distributions of the Co0-modules in V s\ = V s(−1), and in the V s(−m)

more generally. In all of these cases, questions analogous to Problem 10.9 may reward
investigation.

Problem 10.11. In Corollary 8.3 we have used our asymptotic results (Theorem 8.1)
on multiplicities of monster modules inside V \ to compute the quantum dimensions of
the monster orbifold, and in so doing confirmed a special case of Conjecture 6.7 of [76].
How generally can this method be applied, to orbifolds V G, where V is a vertex operator
algebra and G is a compact group of automorphisms of V ? Note the following strengths
of the asymptotic approach: thanks to Proposition 3.6 of [76], we did not need to verify
that the monster orbifold of V \ is a rational vertex operator algebra, nor did we need to
assume the positivity condition of Theorem 6.3 in [76] (which in any case does not hold
for V \).
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Appendix A. Monstrous Groups

The table below contains the symbols Γg = N ||h + e, f, . . . , for each conjugacy class
of the monster. Following [58], if h = 1, we omit the ‘||1’ from the symbol. If Wg = {1},
then we write N ||h, whereas if it contains every exact divisor of N/h, we write N ||h+.

The naming of the conjugacy classes is as in [57]. We follow the convention of writing
23AB as a shorthand for 23A∪23B, since these conjugacy classes are related by inversion
in the monster. (There are 22 such pairs. The Monster group has 196 conjugacy classes
in total.) Since the monstrous McKay–Thompson series have real coefficients, Tg = Tg−1

and Γg = Γg−1 for all g in the monster. Note however that 27A and 27B are not related
by inversion, even though Γ27A = Γ27B. To the authors best knowledge, this coincidence
has not yet been explained.

1A 1
2A 2+
2B 2
3A 3+
3B 3
3C 3||3
4A 4+
4B 4||2+
4C 4
4D 4||2
5A 5+
5B 5
6A 6+
6B 6 + 6
6C 6 + 3
6D 6 + 2
6E 6
6F 6||3
7A 7+
7B 7
8A 8+
8B 8||2+
8C 8||4+
8D 8||2
8E 8
8F 8||4
9A 9+
9B 9
10A 10+
10B 10 + 5
10C 10 + 2
10D 10 + 10
10E 10
11A 11+
12A 12+
12B 12 + 4

12C 12||2+
12D 12||3+
12E 12 + 3
12F 12||2 + 6
12G 12||2 + 2
12H 12 + 12
12I 12
12J 12||6
13A 13+
13B 13
14A 14+
14B 14 + 7
14C 14 + 14
15A 15+
15B 15 + 5
15C 15 + 15
15D 15||3
16A 16||2+
16B 16
16C 16+
17A 17+
18A 18 + 2
18B 18+
18C 18 + 9
18D 18
18E 18 + 18
19A 19+
20A 20+
20B 20||2+
20C 20 + 4
20D 20||2 + 5
20E 20||2 + 10
20F 20 + 20
21A 21+
21B 21 + 3
21C 21||3+

21D 21 + 21
22A 22+
22B 22 + 11
23AB 23+
24A 24||2+
24B 24+
24C 24 + 8
24D 24||2 + 3
24E 24||6+
24F 24||4 + 6
24G 24||4 + 2
24H 24||2 + 12
24I 24 + 24
24J 24||12
25A 25+
26A 26+
26B 26 + 26
27A 27+
27B 27+
28A 28||2+
28B 28+
28C 28 + 7
28D 28||2 + 14
29A 29+
30A 30 + 6, 10, 15
30B 30+
30C 30 + 3, 5, 15
30D 30 + 5, 6, 30
30E 30||3 + 10
30F 30 + 2, 15, 30
30G 30 + 15
31AB 31+
32A 32+
32B 32||2+
33A 33 + 11
33B 33+
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34A 34+
35A 35+
35B 35 + 35
36A 36+
36B 36 + 4
36C 36||2+
36D 36 + 36
38A 38+
39A 39+
39B 39||3+
39CD 39 + 39
40A 40||4+
40B 40||2+
40CD 40||2 + 20
41A 41+
42A 42+
42B 42 + 6, 14, 21
42C 42||3 + 7
42D 42 + 3, 14, 42
44AB 44+
45A 45+
46AB 46 + 23

46CD 46+
47AB 47+
48A 48||2+
50A 50+
51A 51+
52A 52||2+
52B 52||2 + 26
54A 54+
55A 55+
56A 56+
56BC 56||4 + 14
57A 57||3+
59AB 59+
60A 60||2+
60B 60+
60C 60 + 4, 15, 60
60D 60 + 12, 15, 20
60E 60||2 + 5, 6, 30
60F 60||6 + 10
62AB 62+
66A 66+
66B 66 + 6, 11, 66

68A 68||2+
69AB 69+
70A 70+
70B 70 + 10, 14, 35
71AB 71+
78A 78+
78BC 78 + 6, 26, 39
84A 84||2+
84B 84||2 + 6, 14, 21
84C 84||3+
87AB 87+
88AB 88||2+
92AB 92+
93AB 93||3+
94AB 94+
95AB 95+
104AB 104||4+
105A 105+
110A 110+
119AB 119+
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[64] T. Creutzig and G. Höhn, Mathieu moonshine and the geometry of K3 surfaces, Commun. Number
Theory Phys. 8 (2014), no. 2, 295–328. MR 3271177

[65] C. J. Cummins and T. Gannon, Modular equations and the genus zero property of moonshine
functions, Invent. Math. 129 (1997), no. 3, 413–443. MR 1465329 (98k:11046)

[66] R. T. Curtis, Natural constructions of the Mathieu groups, Math. Proc. Cambridge Philos. Soc.
106 (1989), no. 3, 423–429. MR 1010366 (90h:20020)

[67] A. Dabholkar, S. Murthy, and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular
Forms, (2012).

[68] S. Deser and R. Jackiw, Erratum: “Topologically massive gauge theories” [Ann. Physics 140
(1982), no. 2, 372–411; MR0665601 (84j:81128)] by Deser, Jackiw and S. Templeton, Ann. Physics
185 (1988), no. 2, 406. MR 965585 (90a:81077b)



MOONSHINE 61

[69] S. Deser, R. Jackiw, and S. Templeton, Topologically massive gauge theories, Ann. Physics 140
(1982), no. 2, 372–411. MR 665601 (84j:81128)

[70] S. Deser, R. Jackiw, and S. Templeton, Three-Dimensional Massive Gauge Theories,
Phys.Rev.Lett. 48 (1982), 975–978.

[71] R. Dijkgraaf, J. Maldacena, G. Moore, and E. Verlinde, A black hole farey tail, (2007).
[72] R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde, Elliptic genera of symmetric products and

second quantized strings, Commun. Math. Phys. 185 (1997), 197–209.
[73] L. Dixon, P. Ginsparg, and J. Harvey, Beauty and the beast: superconformal symmetry in a Monster

module, Comm. Math. Phys. 119 (1988), no. 2, 221–241. MR 968697 (90b:81119)
[74] L. Dixon, J. A. Harvey, C. Vafa, and E. Witten, Strings on orbifolds, Nuclear Phys. B 261 (1985),

no. 4, 678–686. MR 818423 (87k:81104a)
[75] , Strings on orbifolds. II, Nuclear Phys. B 274 (1986), no. 2, 285–314. MR 851703

(87k:81104b)
[76] C. Dong, X. Jiao, and F. Xu, Quantum dimensions and quantum Galois theory, Trans. Amer.

Math. Soc., 365 (2013), no. 12, 6441–6469. MR 3105758
[77] C. Dong, H. Li, and G. Mason, Some twisted sectors for the Moonshine module, Moonshine, the

Monster, and related topics (South Hadley, MA, 1994), Contemp. Math., vol. 193, Amer. Math.
Soc., Providence, RI, 1996, pp. 25–43. MR 1372716 (97b:17021)

[78] , Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices,
(1996), no. 18, 913–921. MR 1420556 (98a:17044)

[79] , Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–
600. MR 1615132 (99d:17030)

[80] , Modular invariance of trace functions in orbifold theory and generalized Moonshine, Com-
munications in Mathematical Physics 214 (2000), 1–56.

[81] C. Dong and G. Mason, Nonabelian orbifolds and the boson-fermion correspondence, Comm. Math.
Phys. 163 (1994), no. 3, 523–559. MR 1284796 (95i:17031)

[82] , On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305–321. MR 1430435
(97k:17042)

[83] , Quantum Galois theory for compact Lie groups, J. Algebra, 214 (1999), no. 1, 92–102.
MR 1684904 (2000g:17043b)

[84] J. F. Duncan, Super-Moonshine for Conway’s largest sporadic group, Duke Math. J. 139 (2007),
no. 2, 255–315.

[85] J. F. R. Duncan and I. B. Frenkel, Rademacher sums, moonshine and gravity, Commun. Number
Theory Phys. 5 (2011), no. 4, 1–128.

[86] J. F. R. Duncan, M. Griffin and K. Ono, Proof of the Umbral Moonshine Conjecture, ArXiv e-prints
(2015).

[87] J. F. R. Duncan and J. A. Harvey, The Umbral Mooonshine Module for the Unique Unimodular
Niemeier Root System, ArXiv e-prints (2014).

[88] J. F. R. Duncan and S. Mack-Crane, The Moonshine Module for Conway’s Group, ArXiv e-prints
(2014).

[89] , Derived Equivalences of K3 Surfaces and Twined Elliptic Genera, (2015).
[90] J. Duncan and A. O’Desky, Super Vertex Algebras, Meromorphic Jacobi Forms, and Umbral Moon-

shine, (2015).
[91] J. F. R. Duncan and K. Ono, The Jack Daniels Problem, ArXiv e-prints (2014).
[92] T. Eguchi and K. Hikami, Superconformal Algebras and Mock Theta Functions 2. Rademacher

Expansion for K3 Surface, Communications in Number Theory and Physics 3, (2009), 531–554.
[93] , Note on Twisted Elliptic Genus of K3 Surface, Phys.Lett. B694 (2011), 446–455.
[94] T. Eguchi, H. Ooguri, and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M24,

Exper.Math. 20 (2011), 91–96.



62 JOHN F. R. DUNCAN, MICHAEL J. GRIFFIN AND KEN ONO

[95] T. Eguchi, H. Ooguri, A. Taormina, and S.-K. Yang, Superconformal Algebras and String Com-
pactification on Manifolds with SU(N) Holonomy, Nucl. Phys. B315 (1989), 193.

[96] T. Eguchi and A. Taormina, Unitary representations of the N = 4 superconformal algebra, Phys.
Lett. B 196 (1987), no. 1, 75–81. MR 910253 (88j:17022)

[97] M. Eichler and D. Zagier, The theory of Jacobi forms, Birkhäuser, 1985.
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Bringmann), Astérisque (2009), no. 326, Exp. No. 986, vii–viii, 143–164 (2010), Séminaire Bour-
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