Edge critical graphs with low bound of average degrees

Xuechao Li
Division of Academic Enhancement
The University of Georgia, Athens, GA 30602, USA
Email: xcli@uga.edu

Abstract

A k-edge-coloring of a graph G is a function $\phi : E(G) \mapsto \{1, \ldots, k\}$ such that any two adjacent edges receive different colors. The edge chromatic number, denoted by $\chi_e(G)$, of a graph G is the smallest integer k such that G has a k-edge-coloring. Vizing’s Theorem states that the edge chromatic number of a simple graph G is either Δ or $\Delta + 1$, where Δ denotes the maximum vertex degree of G. A graph G is class one if $\chi_e(G) = \Delta$ and is class two otherwise. A class two graph G is critical if $\chi_e(G - e) < \chi_e(G)$ for each edge e of G. A critical graph G is Δ-critical if it has maximum degree Δ. Recently D. Woodall proved that average degree of an edge-Δ-critical graph is $\frac{4}{3}(\Delta + 3)$ for $8 \leq \Delta \leq 17$. We improve this result to that $\frac{5\Delta + 4}{7}$ for $8 \leq \Delta \leq 17$.

Key words: Adjacency lemma; Edge-critical graph.