Minimum Degree and Dominating Paths

Ron Gould
Emory University
Joint work with Ralph Faudree, Mike Jacobson and Doug West
Dedicated to Ralph J. Faudree

October 17, 2015
Figure: Ralph Faudree - Outstanding Mathematician and Great Friend
Figure: Ralph Faudree - Powerful Administrator
Figure: From experience he did not believe all he heard!
Figure: Ralph and Pat on the 3-gorges river cruise.
Figure: The Gang of 7: Back: Burr, Jacobson, Rousseau, Schelp
Front: RG, Uncle Paul, Ralph: March 1984
Figure: Dinner in Budapest with Miki Simonovits.
A set $S \subseteq V(G)$ is a connected dominating set provided $G[S]$ is connected and each vertex of $V(G) - S$ has a neighbor in S.

Fact: large minimum degree implies small connected dominating set.
A set $S \subset V(G)$ is a connected dominating set provided $G[S]$ is connected and each vertex of $V(G) - S$ has a neighbor in S.

Fact: large minimum degree implies small connected dominating set.

Theorem (Caro – West – Yuster, 2000)
For large fixed k, every n-vertex graph G with $\delta(G) \geq k$ has a connected dominating set with size at most

$$\frac{(1+o(1))\ln k}{k}n$$
Question

What do we known about $G[S]$?
Question

What do we known about $G[S]$?

Spanning trees are connected dominating sets, with the leaves as the dominated vertices.
But what can we say about the structure of $G[S]$, even if it is a tree of some sort?
But what can we say about the structure of $G[S]$, even if it is a tree of some sort?

One of our goals will be to try and say something about one special case of a connected dominating set that is a tree - namely a path.
More background - Maybe the set is not so small

Theorem

Some k-regular graphs have no dominating set of size less than

$$\frac{1 + \ln (k+1)}{k+1} n$$

A probabilistic argument for this.
Definition

A path P such that every vertex of G is on P, or adjacent to a vertex of P is called a dominating path.
Control $G[S]$ - dominating paths

Definition

A path P such that every vertex of G is on P, or adjacent to a vertex of P is called a **dominating path**.

Theorem

(*Dirac*, 1952)

Every n-vertex graph with $\delta(G) \geq (n - 1)/2$ has a spanning path, hence a dominating path with $n - 2$ vertices.
Definition

Vertices u and v are λ-distant provided $\text{dist}(u, v) \geq \lambda$.

Theorem

(Broersma, 1988)

Let G be a k-connected graph ($k \geq 1$) and let $\lambda \geq 2$. If the degree sum of any $k + 2$ mutually $(2\lambda - 1)$-distant vertices is at least $n - 2k - 1 - (\lambda - 2)k(k + 2)$, then G has a path where every vertex is at distance less than λ of this path.

Corollary

Let G be a k-connected graph. If the degree sum of any $k + 2$ mutually 3-distant vertices is at least $n - 2k - 1$

then G has a dominating path.
Dominating cycles were usually long cycles

Theorem

(Yoshimoto, 2008)

If

\[\text{deg } e_1 + \text{deg } e_2 > |V(G)| - 4 \]

for any two remote edges \(e_1, e_2 \), then all longest cycles in \(G \) are dominating and this bound is best possible.
More long cycles

Theorem
(Bondy, 1980)
If G is 2-connected of order n and

$$\sigma_3(G) \geq n + 2,$$

then each longest cycle of G is dominating.

Theorem
(Yamashita, 2008)
If G is 3-connected of order n and

$$\sigma_4(G) \geq n + \kappa(G) + 3,$$

then G contains a longest cycle which is dominating.
Question

What minimum degree guarantees a “small” dominating path?
Our driving question

Question
What minimum degree guarantees a “small” dominating path?

Question
How small is small?
Our Results

Theorem

Every n-vertex connected graph G with

$$\delta(G) \geq \frac{n}{3} - 1$$

contains a dominating path, and the inequality is sharp.
Sharpness Example

\[\text{Minimum Degree and Dominating Paths} \]
Theorem

If G is an n-vertex 2-connected graph with

$$\delta(G) \geq (n + 1)/4,$$

then G contains a dominating path.

(This is almost sharp in the sense there is an example with $\delta(G) = (n - 6)/4$ that fails.)
(minus edges to one vertex per clique)

$K_k + (k+2)K_k$
More control of the path length

Theorem

If $\delta(G) \geq n/3$, then G has a dominating k vertex path for every k from the least value to at least

$$\min \{ n, 2\delta(G) + 1 \}$$

and this is sharp.
Better yet!

Theorem

If \(\delta(G) \geq cn \) with \(c > 1/3 \), then \(G \) has a dominating path with length logarithmic in \(n \) (base depends only on \(c \)).
Theorem

If $\delta(G) \geq cn$ with $c > 1/3$, then G has a dominating path with length logarithmic in n (base depends only on c).

Remark: The Alon - Wormald result implies min deg k guaranteeing an s-vertex dominating path requires $s > \frac{\ln k}{k} n$. But when s is constant a direct argument gives more.
Theorem

Fix \(s \in \mathbb{N} \) and \(c \in \mathbb{R} \) with \(c < 1 \). For \(n \) sufficiently large, with

\[
\delta(G) \geq n - 1 - cn^{1-1/s}
\]

the graph contains an \(s \)-vertex dominating path.
Theorem

Given $s \in \mathbb{N}$ and $c > 1$, for n suff. large, some n-vertex graph with

$$\delta \geq n - c(s \ln n)^{1/2} \ n^{1-1/s}$$

has no dominating set of size at most s.

Ron Gould Emory University Joint work with Ralph Faudree, Mike Jacobson and Doug West

Dedicated to Ralph J. Faudree

Minimum Degree and Dominating Paths
Theorem

Given \(s \in N \) and \(c > 1 \), for \(n \) suff. large, some \(n \)-vertex graph with \(\delta \geq n - c(s/n)^{1/2} n^{1-1/s} \) has no dominating set of size at most \(s \).

Corollary

In particular, no \(s \)-vertex dominating path.
Theorem

Let G be a connected n-vertex graph with

$$\delta(G) \geq an + \log_{a/(1-a)} n$$

where $a > 1/2$. For n suff. large, G has an s-vertex dominating path whenever

$$\log_{a/(1-a)} n \leq s \leq n$$

starting from any vertex.
For $1/3 < a < 1$, there is a constant $c = c(a)$ such that if n is sufficiently large and $\delta(G) \geq an$, then G contains a dominating path with at most $c \log_{1/(1-a)} n$ vertices.
Theorem

Fix $s \in \mathbb{N}$ and $c \in \mathbb{R}$ with $c < 1$. For suff. large n,

$$\delta(G) \geq n - 1 - cn^{1-1/s}$$

ensures an s-vertex dominating path.

Near Sharpness.

Theorem

Given $s \in \mathbb{N}$ and $c > 1$, for suff. large n, some n-vertex graph with $\delta(G) \geq n - c(sln n)^{1/s}n^{1-1/s}$ has no dominating set of size at most s.
Balanced Caterpillars

Definition

spanning caterpillar = spanning tree consisting of a single path (spine) plus leaves.

Definition

balanced = if the vertices of the spine all have the same number of neighbors; nearly balanced = the numbers differ by at most 1.
Theorem

Fix $p \in \mathbb{N}$. For n suff. large, with $(p + 1)$ dividing n and

$$\delta(G) \geq (1 - \frac{p}{(p + 1)^2})n$$

then G contains a balanced spanning caterpillar with $\frac{n}{p+1}$ spine vertices.
Case: $p = 1$ says $\delta \geq 3n/4$ and n even. This implies...
Theorem

Fix a positive integer \(s \) and a real constant \(c \) less than 1. Let \(G \) be an \(n \)-vertex graph such that \(\delta(G) \geq n - cn^{1-1/s} \). If \(n \) is suff. large, then \(G \) contains a nearly balanced spanning caterpillar with \(k \) spine vertices for each \(k \) such that

\[
s \leq k \leq 0.5 \frac{\log n}{\log \log n}.
\]
Question: For \(k \in \mathbb{N} \), when \(G \) is \(k \)-connected, what threshold on \(\delta(G) \) guarantees a dominating path?
Question: For \(k \in \mathbb{N} \), when \(G \) is \(k \)-connected, what threshold on \(\delta(G) \) guarantees a dominating path?

Conjectured to be \(\delta(G) \geq \frac{n-2k-1}{k+2} \); that much is needed - known to be about right when \(k \leq 2 \).
Open Problems

Question: For $k \in \mathbb{N}$, when G is k-connected, what threshold on $\delta(G)$ guarantees a dominating path?

Conjectured to be $\delta(G) \geq \frac{n-2k-1}{k+2}$; that much is needed - known to be about right when $k \leq 2$

Question: For $\delta \geq an$ with $a > 1/3$, how short a dominating path can we get (for n large)?
Question: For $k \in \mathbb{N}$, when G is k-connected, what threshold on $\delta(G)$ guarantees a dominating path?

Conjectured to be $\delta(G) \geq \frac{n - 2k - 1}{k+2}$; that much is needed - known to be about right when $k \leq 2$

Question: For $\delta \geq \alpha n$ with $\alpha > 1/3$, how short a dominating path can we get (for n large)?

Known to be at most $c \log_{1/(1-a)} n$.

Ron Gould Emory University Joint work with Ralph Faudree, M
Question: For $k \in \mathbb{N}$, when G is k-connected, what threshold on $\delta(G)$ guarantees a dominating path?

Conjectured to be $\delta(G) \geq \frac{n-2k-1}{k+2}$; that much is needed - known to be about right when $k \leq 2$

Question: For $\delta \geq an$ with $a > 1/3$, how short a dominating path can we get (for n large)?

Known to be at most $c\log_{1/(1-a)} n$.

Question: For $s \in \mathbb{N}$ and n large, what threshold on $\delta(G)$ ensures an s-vertex dominating path?
Question: For $k \in \mathbb{N}$, when G is k-connected, what threshold on $\delta(G)$ guarantees a dominating path?

Conjectured to be $\delta(G) \geq \frac{n−2k−1}{k+2}$; that much is needed - known to be about right when $k \leq 2$.

Question: For $\delta \geq an$ with $a > 1/3$, how short a dominating path can we get (for n large)?

Known to be at most $c\log_{1/(1−a)} n$.

Question: For $s \in \mathbb{N}$ and n large, what threshold on $\delta(G)$ ensures an s-vertex dominating path?

at most $n – \Omega(n^{1−1/s}$ and at least $n – O(sln n)^{1/s} n^{1−1/s}$.