GRAPHS WITH PRESCRIBED DEGREE
SETS AND GIRTH

by

G. CHARTRAND (Kalamazoo), R. J. GOULD (Kalamazoo) and
S. F. KAPOOR (Kalamazoo)

Abstract

For a finite nonempty set \(\mathcal{S} \) of integers, each of which is at least two, and an integer \(n \geq 2 \), the number \(f(\mathcal{S}; n) \) is defined as the least order of a graph having degree set \(\mathcal{S} \) and girth \(n \). The number \(f(\mathcal{S}; n) \) is evaluated for several sets \(\mathcal{S} \) and integers \(n \). In particular, it is shown that \(f(\{2, 4\}; 2) = 18 \) and \(f(\{3, 4\}; 3) = 18 \).

For integers \(r \geq 2 \) and \(n \geq 3 \), the integer \(f(r, n) \) is defined as the smallest order of an \(r \)-regular graph having girth \(n \) (the girth being the length of the smallest cycle in the graph). Erdős and Sachs [1] have shown that \(f(r, n) \) exists for all integers \(r \geq 2 \) and \(n \geq 3 \). The problem of evaluating \(f(r, n) \) for various values of \(r \) and \(n \) has received considerable attention. The \(r \)-regular graphs having girth \(n \) and order \(f(r, n) \) are known as \((r, n) \)-cages. The object of this paper is to extend the function \(f(r, n) \) and the \((r, n) \)-cages.

The degree set \(\mathcal{D} = \{d_1, d_2, \ldots, d_k\} \) of a graph \(G \) is the set of degrees of the vertices of \(G \). We henceforth assume for \(\mathcal{D} = \{d_1, d_2, \ldots, d_k\} \) that \(d_1 < d_2 < \ldots < d_k \).

For a set \(\mathcal{S} = \{s_1, s_2, \ldots, s_k\} \) of integers with \(2 \leq s_1 < s_2 < \ldots < s_k \) and for an integer \(n \geq 3 \), we define

\[
f(\mathcal{S}; n) = f(s_1, s_2, \ldots, s_k; n)
\]

to be the smallest order of a graph having girth \(n \) and degree set \(\mathcal{S} \). The existence of \(f(\mathcal{S}; n) \) is guaranteed by the above result of Erdős and Sachs. In particular, if \(H_i \) is an \(s_i \)-regular graph of girth \(n \), where \(V(H_i) \cap V(H_j) = \emptyset \) \((i \neq j) \), then the graph \(G \) defined by

\[
V(G) = \bigcup_{i=1}^{k} V(H_i) \quad \text{and} \quad E(G) = \bigcup_{i=1}^{k} E(H_i)
\]

has degree set \(\mathcal{S} \) and girth \(n \). We shall refer to a graph \(G \) of order \(f(\mathcal{S}; n) \) having degree set \(\mathcal{S} = \{s_1, s_2, \ldots, s_k\} \) and girth \(n \) as an \((\mathcal{S}; n) \)-cage or an \((s_1, s_2, \ldots, s_k; n) \)-cage.

Research of the third author was partially supported by a Faculty Research Fellowship from Western Michigan University.

AMS (MOS) subject classifications (1980). Primary 05C38; Secondary 05C36.

Key words and phrases. \((r, n)\)-cage, complete bipartite graph, \(n \)-cycle, degree set, girth, order of a graph, vertex.
In [2] Kapoor, Polimeni and Wall showed that for a given set \(\mathcal{D} = \{a_1, a_2, \ldots, a_k\} \) of positive integers (with \(a_1 < a_2 < \cdots < a_k \)), the minimum order of a graph \(G \) with degree set \(\mathcal{D} \) is \(1 + a_k \). If \(v \) is a vertex of degree \(a_k \) in a graph \(G \) with degree set \(\mathcal{D} = \mathcal{D} \) containing no vertices of degree 1, then there must be two adjacent vertices which are themselves adjacent to \(v \), producing a 3-cycle. This gives the following observation.

Theorem 1. If \(\mathcal{D} = \{a_1, a_2, \ldots, a_k\} \) is a set of positive integers with \(2 \leq a_1 < a_2 < \cdots < a_k \), then \(f(\mathcal{D}; 3) = 1 + a_k \).

The difficulty of evaluating \(f(\mathcal{D}; n) \) appears to increase sharply when \(n > 3 \). By placing restrictions on \(\mathcal{D} \), however, we are able to determine \(f(\mathcal{D}; n) \) in certain cases. In particular, if \(\mathcal{D} \) has cardinality two and \(a_1 = 2 \), the following result can be obtained.

Theorem 2. For \(m \geq 3, n \geq 3 \),

\[
f(2, m; n) = \begin{cases}
\frac{m(n - 2) + 4}{2} & \text{if } n \text{ is even}, \\
\frac{m(n - 2) + 2}{2} & \text{if } n \text{ is odd}.
\end{cases}
\]

Proof. We observe that \(f(2, m; n) \leq 2 + m(n - 2)/2 \) for \(n \) even and \((2, m; n) \leq 1 + m(n - 1)/2 \) if \(n \) is odd, since the graphs \(G_1 \) and \(G_2 \) of Fig. 1 have degree set \(\{2, m\} \), girth \(n \) and the appropriate orders.

![Fig. 1. The \((2, m; n)\)-cages for \(n \) even and for \(n \) odd](image)

The graphs \(G_1 \) and \(G_2 \) are examples of \((2, m; n)\)-cages, where \(G_1 \) has girth 4 and order \(2m + 2 \) if \(n \) is even, or \(2m + 1 \) if \(n \) is odd. \(G_2 \) has girth 6 and order \(3m + 2 \) if \(n \) is even, or \(3m + 1 \) if \(n \) is odd.
Now suppose \(n \geq 4 \) is an even integer and let \(v \) be a vertex of degree \(m \) in a graph \(G \) having degree set \(\{2, m\} \) and girth \(n \). Since \(n \geq 4 \), the vertices \(v_{n,1}, v_{n,2}, \ldots, v_{n,m} \) adjacent to \(v \) are distinct and pairwise non-adjacent; therefore, \(G \) contains more than \(m + 1 \) vertices, which gives the desired result for \(n = 4 \). Thus, we assume \(n \geq 6 \). Since \(\emptyset = \{2, m\} \), each vertex \(v_{n,i} \) (\(i = 1, 2, \ldots, m \)) is adjacent to at least one new vertex \(v_{n,1} \). Since \(n \geq 6 \), the vertices \(v_{n,1}, v_{n,2}, \ldots, v_{n,m} \) are distinct and pairwise non-adjacent, so that \(G \) has order at least \(2m + 2 \), which gives the required result for \(n = 6 \).

If \(n \geq 8 \) we repeat the above process until the vertices

\[
v_{n-2,1}, v_{n-2,2}, \ldots, v_{n-2,m}, n
\]

have been added (see Fig. 1a). These vertices are distinct and pairwise non-adjacent, for otherwise, an \((n - 1)\)-cycle is produced. Thus, \(G \) has order at least \(2 + m(n - 2)/2 \), i.e.,

\[
f(2, m; n) \geq 2 + m(n - 2)/2,
\]

which completes the proof of the theorem if \(n \) is even.

The argument if \(n \) is odd is similar and is omitted.

Another case in which \(f(\emptyset, n) \) can be evaluated rather easily occurs when \(|\emptyset| = 2\) and \(n = 4\).

Theorem 3. For \(2 \leq r < s \),

\[
f(r, s; 4) = r + s.
\]

Proof. The complete bipartite graph \(K(r, s) \) has degree set \(\{r, s\} \) and girth four; hence \(f(r, s; 4) \leq r + s \).

In order to show that \(f(r, s; 4) \geq r + s \), let \(G \) be a graph with degree set \(\{r, s\} \) and girth four. Let \(u \in V(G) \) such that \(\deg u = s \). Let \(v_1, v_2, \ldots, v_s \) be the \(s \) vertices adjacent to \(u \). Since \(G \) has no 3-cycles, \(\langle v_1, v_2, \ldots, v_s \rangle \) contains no edges. Since the degree of \(v_i \) is at least \(r \) and \(v_i \) is not adjacent to any of \(v_1, v_2, \ldots, v_s \), at least \(r \) other vertices must be present in \(G \), i.e., \(|V(G)| \geq \geq r + s \). Hence \(f(r, s; 4) \geq r + s \), giving the desired result.

Since it is well known that \(f(r; 3) = 2r \), the above result could be extended to include the case \(r = s \).

Due to the difficulty of determining \(f(r, n) \) when \(n \geq 5 \), it is probably not surprising that the problem of evaluating \(f(\emptyset, n) \) when \(|\emptyset| = 2\) and \(n \geq 5 \) seems to be extremely difficult. We now consider this problem when \(\emptyset = \{3, 4\} \) and \(n = 5 \) or \(n = 6 \).
Theorem 4. \(f(3, 4; 5) = 13 \).

Proof. Let \(G \) be a graph with degree set \(\{3, 4\} \) and girth 5. Let \(v \) be a vertex of degree 4 in \(G \), and let \(v_0, v_1, v_2, v_3 \) be the vertices adjacent to \(v \). Since \(G \) contains no 3-cycles, no two of the vertices \(v_0, v_1, v_2, v_3 \) are adjacent to each other. Since every vertex of \(G \) has degree 3 or 4, the vertex \(v_i \) (\(i = 0, 1, 2, 3 \)) is adjacent to at least two vertices different from \(v \), say \(v_{i,1} \) and \(v_{i,2} \). Further, since \(G \) contains no 4-cycles, for \(i \neq j \) we have \(v_{i,1} \neq v_{j,1} \) when \(i, j \in \{0, 1, 2, 3\} \) and \(i, j \in \{1, 2\} \). Thus \(G \) contains at least 13 vertices so that \(f(3, 4; 5) \geq 13 \).

To show that \(f(3, 4; 5) = 13 \), it now suffices to verify the existence of a graph of order 13 having girth 5 and degree set \(\{3, 4\} \). To the graph partially constructed above, add the edges

\[v_{i,1} v_{i+1,1}, v_{i,1} v_{i+2,1}, v_{i,1} v_{i+3,1}, v_{i,2} v_{i+1,1}, \text{ and } v_{i,3} v_{i+3,1} \]

for \(i = 0, 1, 2, 3 \), where \(i + 1, i + 2 \) and \(i + 3 \) are expressed as 0, 1, 2 or 3 modulo 4. The graph \(H \) so described is shown in Figure 2. The graph \(H \) has order 13 and \(\mathcal{B}_2 = \{3, 4\} \). Also \(v, v_0, v_{0,1}, v_{0,2}, v_0, v \) is a 5-cycle of \(H \). It remains only to show that \(H \) contains no 3-cycles or 4-cycles. It is straightforward to see that \(H \) has no 3-cycle or 4-cycle containing any vertex in the set \(U = \{v, v_0, v_1, v_2, v_3\} \). If \(H \) contains a 3-cycle or 4-cycle, all vertices of such a cycle must belong to the set \(V(H) - U \). Such a cycle \(C \) must contain a vertex \(v_{i,2} \) for \(i = 0, 1, 2 \) or 3. Thus, \(C \) must contain the path

\[v_{i,1}, v_{i+1,2}, v_{i+2,1}, v_{i+3,1}, v_{i+4,2} \]

or the path

\[v_{i,1}, v_{i+1,2}, v_{i+2,1}, v_{i+3,1}, v_{i+4,2} \]

which cannot occur if \(G \) has length 3 or 4. Thus \(G \) has girth 5.
Theorem 5. \(f(3, 4; 6) = 18 \).

Proof: Let \(G \) be a graph with degree set \(\{3, 4\} \) and girth six. Let \(v \) be a vertex of degree 4 in \(G \) and let \(u_0, u_1, u_2, u_3 \) be the vertices adjacent to \(v \). Since \(G \) contains no 3-cycles, no two of the vertices \(u_0, u_1, u_2, u_3 \) are adjacent. Since every vertex of \(G \) has degree 3 or 4, the vertex \(v_i (i = 0, 1, 2, 3) \) is adjacent to at least two vertices different from \(v \), say \(v_{i,j} \) and \(v_{i,j'} \), for \(i \neq j, j' \). Further, since \(G \) contains no 4-cycles, for \(i \neq j \), we have \(v_{i,j} \neq v_{j,i} \) where \(i, j \in \{0, 1, 2, 3\} \) and \(i \neq j \).

Again, each \(v_{i,j} \) (\(i = 0, 1, 2, 3; \ j = 1, 2 \)) has degree at least three. Thus only these 17 vertices, then each \(u_k (k = 0, 1, 2, 3) \) must have degree 4 and be adjacent to exactly four of the vertices \(v_{i,j} \) (\(i = 0, 1, 2, 3; \ j = 1, 2 \)). If \(G \) has \(\text{adjacent to both } v_{i,j} \text{ and } v_{i,j'} \text{ a } 4\text{-cycle is produced. Thus each } u_k \text{ must be adjacent to exactly one of } v_{i,j} \text{ and } v_{i,j'} \text{ (}i = 0, 1, 2, 3; \ j = 1, 2\), thereby producing a 4-cycle. Thus , the existence of a graph of order 18 having girth 6 and degree set \(\{3, 4\} \). To the graph partially constructed above, add the edges

\[u_i v_0, u_i v_{i+1,2}, u_i v_{i+3,2}, u_i v_{i+1,3}, u_i v_{i+2,3}, u_i v_{i+3,4} \]

where the subscripts \(i + 1 \) and \(i + 2 \) are expressed as 0, 1, 2, or 3 modulo 4.

Observe that \(v, v_0, v_{0,1}, v_1, v_{1,2}, v_2, v_{3,2} \) is a 6-cycle. It remains only to show that \(G \) contains no \(r \)-cycle for \(3 \leq r \leq 5 \). It is straightforward to see that \(G \)

![Fig. 3. Two drawings of a (3, 4; 6)-cage](image-url)
contains no such cycle containing any vertex in the set $M = \{v, v_o, v_1, v_2, v_3\}$. If G contains a cycle of length five or less, all vertices of such a cycle must belong to the set $V(G) - M$.

Such a cycle C must contain a vertex u_i ($i = 0, 1, 2, 3$). Thus C must contain one of the following paths:

1. $u_i, v_{i,3}, u_i, v_{i,3}, u_{i+2}$
2. $u_i, v_{i,3}, u_{i+1}, v_{i,3}, u_{i+2}$
3. $u_i, v_{i,3}, u_{i+1}, v_{i,3}, u_{i+2}$, u_i
4. $u_i, v_{i,3}, u_{i+1}, v_{i,3}, u_{i+2}$
5. $u_i, v_{i,3}, u_{i+1}, v_{i,3}, u_{i+2}$

where $i = 0, 1, 2, 3$ and $k = 1, 2, 3$ and all subscripts are expressed modulo 4. Since these paths do not extend to a cycle of length less than six, the graph G has girth six. Also $\Delta G = \{3, 4\}$. Thus $f(3, 4; 6) = 18$.

REFERENCES

(Received October 19, 1979)