THE CHVÁTAL-ERDŐS CONDITION AND 2-FACTORS
WITH A SPECIFIED NUMBER OF COMPONENTS

GUANTAO CHEN*
Department of Mathematics and Statistics
Georgia State University, Atlanta, GA 30303, USA

RONALD J. GOULD
Department of Mathematics and Computer Science
Emory University, Atlanta, GA 30322, USA

KEN-ICHI KAWARABAYASHI†
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo 101-8430, Japan

KATSUHIRO OTA
Department of Mathematics, Keio University
3-14-1 Hiyoshi, Kohoku-Ku, Yokohama 223-8522, Japan

AKIRA SAITO‡
Department of Computer Science, Nihon University
Sakurajosui 3-25-40, Setagaya-Ku, Tokyo 156-8550, Japan

INGO SCHIERMEYER
Institut für Diskrete Mathematik und Algebra
Technische Universität
Bergakademie Freiberg, D-09596 Freiberg, Germany

*Partially supported by NSA grant H98230–04–1–0300.
†Partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research, by Sumitomo Foundation and by Inoue Research Award for Young Scientists.
‡Partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 15540140, 2004, and The Research Grant of Nihon University, College of Humanities and Sciences.
Abstract

Let G be a 2-connected graph of order n satisfying $\alpha(G) = a \leq \kappa(G)$, where $\alpha(G)$ and $\kappa(G)$ are the independence number and the connectivity of G, respectively, and let $r(m, n)$ denote the Ramsey number. The well-known Chvátal-Erdős Theorem states that G has a hamiltonian cycle. In this paper, we extend this theorem, and prove that G has a 2-factor with a specified number of components if n is sufficiently large. More precisely, we prove that (1) if $n \geq k \cdot r(a + 4, a + 1)$, then G has a 2-factor with k components, and (2) if $n \geq r(2a + 3, a + 1) + 3(k - 1)$, then G has a 2-factor with k components such that all components but one have order three.

Keywords: Chvátal-Erdős condition, 2-factor, hamiltonian cycle, Ramsey number.

2000 Mathematics Subject Classification: Primary: 05C38; Secondary: 05C40, 05C45, 05C69.

1. Introduction

For a graph G, we denote by $\alpha(G)$ and $\kappa(G)$ the independence number and the connectivity of G, respectively. If the inequality $\alpha(G) \leq \kappa(G)$ holds, we say that G satisfies the Chvátal-Erdős condition, in view of the following well-known theorem.

Theorem A (Chvátal-Erdős Theorem [4]). *Every 2-connected graph G satisfying $\alpha(G) \leq \kappa(G)$ has a hamiltonian cycle.*

If every pair of nonadjacent vertices x and y in a graph G of order n satisfy $\deg_G x + \deg_G y \geq n$, then we say that G satisfies Ore’s condition. It is also well-known that every graph of order at least three satisfying Ore’s condition has a hamiltonian cycle.

Theorem B (Ore’s Theorem [8]). *Let G be a graph of order $n \geq 3$. If $\deg_G x + \deg_G y \geq n$ for every pair of nonadjacent vertices x and y of G, then G has a hamiltonian cycle.*

Though the Chvátal-Erdős condition and Ore’s condition look quite different, Bondy [1] proved that they are not independent.

Theorem C (Bondy [1]). *Every graph of order at least three satisfying Ore’s condition satisfies the Chvátal-Erdős condition.*
A hamiltonian cycle is a 2-factor with exactly one component. From this point of view, since the Chvátal-Erdős condition and Ore’s condition guarantee the existence of a 2-factor with one component, we may suspect that both conditions guarantee the existence of a 2-factor with a specified number of components. Here we remark that we have to take the order of a graph into account. For example, a balanced complete bipartite graph of order at least four satisfies both the Chvátal-Erdős condition and Ore’s condition while it has a 2-factor with \(k \) components only if its order is at least \(4k \). Therefore, when we consider this kind of problem, we always have to consider a graph of a sufficiently large order.

For Ore’s condition, Brandt et al. [2] proved the following extension of Theorem B.

Theorem D (Brandt et al. [2]). Let \(k \) be a positive integer. Then every graph of order at least \(4k \) satisfying Ore’s condition has a 2-factor with \(k \) components.

Since the balanced complete bipartite graph of order \(4k - 2 \) does not have a 2-factor with \(k \) components, the bound \(4k \) of the order in the above theorem is almost best-possible. Later, Enomoto [6] improved the bound to \(4k - 1 \), which is best-possible.

While the extension of Ore’s Theorem to a 2-factor with a specified number of components has been studied in detail, little is known about the extension of the Chvátal-Erdős Theorem in the same direction. Thus, we present the following conjecture.

Conjecture 1. For each positive integer \(k \), there exists a positive integer \(f(k) \) such that every 2-connected graph \(G \) of order at least \(f(k) \) satisfying \(\alpha(G) \leq \kappa(G) \) has a 2-factor with exactly \(k \) components.

Actually, Kaneko and Yoshimoto [7] tackled this conjecture for \(k = 2 \), and almost solved it.

Theorem E (Kaneko and Yoshimoto [7]). *Every 4-connected graph of order at least six satisfying \(\alpha(G) \leq \kappa(G) \) has a 2-factor with two components.*

Recently, Egawa [5] has pointed out that the proof of Theorem E in [7] misses one case to be considered. But even if this possible flaw is fixed, their proof technique does not work for graphs of connectivity two or three. Therefore, they posed the following conjecture.
Conjecture F. Every 2-connected graph G of sufficiently large order satisfying $\alpha(G) \leq \kappa(G)$ has a 2-factor with two components.

The purpose of this paper is to give a partial solution to Conjecture 1. Let $r(m, n)$ denote the Ramsey number.

Theorem 2. Let k be a positive integer and let G be a 2-connected graph with $\alpha(G) = a \leq \kappa(G)$.

1. If $|G| \geq k \cdot r(a + 4, a + 1)$, then G has a 2-factor with k components.
2. If $|G| \geq r(2a + 3, a + 1) + 3(k - 1)$, then G has a 2-factor with k components such that $k - 1$ components have order exactly three.

We remark that the above theorem is not a complete solution of Conjecture 1 since in the conjecture the lower bound of the order in the assumption only depends on k, while in both (1) and (2) of Theorem 2 the lower bound depends not only on k but also on the independence number.

In this paper, we actually prove the following theorem.

Theorem 3. Let G be a graph of independence number a, and let C be a cycle in G.

1. If $|C| \geq k \cdot r(a + 4, a + 1)$, then there exist k disjoint cycles C_1, \ldots, C_k with $V(C) = \bigcup_{i=1}^{k} V(C_i)$.
2. If $|C| \geq r(2a + 3, a + 1) + 3(k - 1)$, then there exist k disjoint cycles C_1, \ldots, C_k such that $V(C) = \bigcup_{i=1}^{k} V(C_i)$ and $|C_i| = 3$ for $1 \leq i \leq k - 1$.

We obtain Theorem 2 by applying Theorem 3 to a hamiltonian cycle, whose existence is guaranteed by the Chvátal-Erdős Theorem.

In the next section, we give notation and several definitions which we use in the proofs. In Section 3, we prove Theorem 3.

2. Terminology and Definitions

For graph-theoretic terminology not explained in this paper, we refer the reader to [3]. We define a walk to be a sequence of vertices for which consecutive vertices are adjacent. We express a walk as a sequence of vertices. Let $C = x_0x_1 \ldots x_{l-1}x_0$ be a cycle with an implied orientation. We define $x_i^+ = x_{i+1}$, $x_i^- = x_{i-1}$ and $x_i^{\pm n} = x_{i+n}$ (subscripts counted modulo l).
The subpath $x_i x_{i+1} \ldots x_{j-1} x_j$ in C is denoted by $x_i \overrightarrow{C} x_j$. The same path traversed in the reverse order is denoted by $x_j \overleftarrow{C} x_i$. We also adopt the same notation for a path.

When there is no possibility of confusion, we sometimes consider a path and a cycle as graphs. Thus, for example, if x is a vertex in a path P, we write $x \in V(P)$.

Let H be a subgraph of a graph G, and let T be a cycle or a path in G. Then for $u, v \in V(T)$, a subpath $u \overrightarrow{T} v$ is said to be an H-cluster of T if $V(u \overrightarrow{T} v) \subset V(H)$ and the vertices v^{-} and v^{+}, if they exist, are not in H. In other words, an H-cluster is a maximal subpath of T contained in H.

3. Proof

In this section, we prove Theorem 3.

Proof of Theorem 3. For (1), we proceed by induction on k. If $k = 1$, the conclusion is trivial. Suppose $k \geq 2$. Let D be a cycle in G with $V(D) = V(C)$, and let P be a subpath of D of order $r(a + 4, a + 1)$.

Let u and v be the first and the last vertices of P, respectively. Also, let H be the subgraph of G induced by $V(P)$. Then either there exists a clique of order $a + 4$ in H, or there exists an independent set of order $a + 1$ in H. However, since $\alpha(H) \leq \alpha(G) = a < a + 1$, the latter case does not occur, and hence there exists a clique K of order $a + 4$ in H. Let $I = \{I_1, \ldots, I_l\}$ be the set of K-clusters of P, and let x_i and y_i be the first and the last vertices of I_i, respectively ($1 \leq i \leq l$). Now we choose (D, P, K) so that l, the number of K-clusters, is as small as possible.

Suppose I has two K-clusters of order at least two. We may assume $|I_1| \geq 2$ and $|I_2| \geq 2$, and I_1 precedes I_2 along P. Let $C_1 = y_1 \overrightarrow{P} x_2 y_1$ and $C' = x_2^+ \overrightarrow{D} y_1^+ x_2^+$. Then $|C_1| \leq |P| = r(a + 4, a + 1)$ and $|C'| \geq (k - 1) \cdot r(a + 4, a + 1)$. By the induction hypothesis, C' can be decomposed into $k - 1$ disjoint cycles C_2, \ldots, C_k. Then C_1, C_2, \ldots, C_k give a required decomposition. Therefore, we may assume that P has at most one K-cluster of order two or more. We may assume that I_1 is a largest K-cluster. Then I_2, \ldots, I_l all consist of single vertices.

Suppose $|I_1| \geq 5$. Let $C_1 = x_1^+ x_1^{+3} x_1^+$ and $C' = x_1 x_1^{+4} \overrightarrow{D} x_1$. Then $|C_1| = 3$ and $|C'| \geq k \cdot r(a + 4, a + 1) - 3 \geq (k - 1) \cdot r(a + 4, a + 1)$. By the induction hypothesis, C' can be decomposed into $k - 1$ disjoint cycles C_2, \ldots, C_k. Then C_1, C_2, \ldots, C_k give a required decomposition of C.

Therefore, we may assume $|I_1| \leq 4$. It follows that $|K| = \sum_{i=1}^k |I_i| \leq l + 3$. Since $|K| = a + 4$, we have $l \geq a + 1$. Let $A = \{y_1^+, \ldots, y_l^+\}$. Then $|A| \geq a + 1 > \alpha(G)$ and hence A is not an independent set. Let $y_i^+y_j^+ \in E(G)$, $1 \leq i < j \leq l$. We may assume that I_i precedes I_j along P. Let $C' = y_j^+Dy_iy_j^+Dy_i^+y_j^+$ and $P' = uP_iy_i y_jP_i^+y_j^+Pv$. Then $V(C') = V(D) = V(C)$, P' is a subpath of C' of order $r(a + 4, a + 1)$ and the set of K-clusters of P' is $I - \{I_i, I_j\} \cup \{x_iP_iy_i y_jPx_i\}$. This contradicts the minimality of the number of K-clusters, and the conclusion for (1) follows.

For (2), we also proceed by induction on k. The conclusion trivially holds if $k = 1$. Suppose $k \geq 2$. Let H be the subgraph induced by $V(C)$. Since $|H| = |C| \geq r(2a + 3, a + 1) + 3(k - 1) > r(2a + 3, a + 1)$, either there exists a clique of order $2a + 3$ in H, or there exists an independent set of order $a + 1$ in H. However, since $\alpha(H) \leq \alpha(G) < a + 1$, the latter case does not occur. Therefore, H has a clique K of order $2a + 3$. Note that H has a hamiltonian cycle C.

Take a hamiltonian cycle D of H so that

(a) the number of K-clusters of D is as small as possible, and

(b) the order of a largest K-cluster of D is as large as possible, subject to (a).

Let $I = \{I_1, I_2, \ldots, I_l\}$ be the set of K-clusters of D, and let x_i and y_i be the first and the last vertices of I_i, respectively ($1 \leq i \leq l$).

Suppose some K-cluster I_i has five or more vertices. Let $C_1 = x_i^+x_i^{++}x_i^{+++}x_i^+$ and $C' = x_i^{+4}Dx_i$. Then $|C_1| = 3$ and $|C'| \geq r(2a + 3, a + 1) + 3(k - 2)$. By the induction hypothesis, C' can be decomposed into $k - 1$ cycles C_2, \ldots, C_k such that $|C_2| = |C_3| = \cdots = |C_{k-1}| = 3$. Then C_1, C_2, \ldots, C_k form a required cycle decomposition. Therefore, we may assume that $|I_i| \leq 4$ for each i, $1 \leq i \leq k$. We may assume that I_1 is a largest K-cluster.

Assume $|I_i| \geq 3$ for some i, $2 \leq i \leq l$. Let $D' = y_1Dx_ix_i^{++}Dx_1^+x_i^+y_1$. Then D' is a hamiltonian cycle of H. Furthermore, D' has the same number of K-clusters as D and $x_1x_i^+x_i^+Dx_1$ is a K-cluster, which is larger than I_1. This contradicts the choice (b) of D. Therefore, $|I_i| \leq 2$ for each i, $2 \leq i \leq l$. It follows that $2a + 3 = |K| = \sum_{i=1}^l |I_i| \leq 2l + 2$, which implies $l \geq a + 1$. Then by the same argument as in the last part of the proof of (1), we have a hamiltonian cycle C' of H such that the number of K-clusters of C' is $l - 1$. This contradicts the choice (a) of D. Therefore, the conclusion follows.
References

Received 1 March 2006
Revised 23 July 2007
Accepted 23 July 2007