On vertex-disjoint cycles and degree sum conditions

Ronald J. Gould, Kazuhide Hirohata, Ariel Keller

Abstract

This paper considers a degree sum condition sufficient to imply the existence of k vertex-disjoint cycles in a graph G. For an integer $t \geq 1$, let $\sigma_t(G)$ be the smallest sum of degrees of t independent vertices of G. We prove that if G has order at least $7k + 1$ and $\sigma_t(G) \geq 8k - 3$, with $k \geq 2$, then G contains k vertex-disjoint cycles. We also show that the degree sum condition on $\sigma_t(G)$ is sharp and conjecture a degree sum condition on $\sigma_t(G)$ sufficient to imply G contains k vertex-disjoint cycles for $k \geq 2$.

1. Introduction

In this paper, all graphs are simple. Let G be a graph. For $u \in V(G)$, the set of neighbors of u in G is denoted by $N_G(u)$, and we denote $d_G(u) = |N_G(u)|$. Let H be a subgraph of G, and let $S \subseteq V(G)$. For $u \in V(G) - V(H)$, we denote $N_H(u) = N_G(u) \cap V(H)$ and $d_H(u) = |N_H(u)|$. For $u \in V(G) - S$, $N_G(u) = N_G(u) \cap S$. Furthermore, $N_G(S) = \cup_{u \in S} N_G(u)$ and $N_H(S) = N_G(S) \cap V(H)$. Let A, B be two disjoint subgraphs of G. Then $N_G(A) = N_G(V(A))$ and $N_B(A) = N_G(A) \cap V(B)$. The subgraph of G induced by S is denoted by (S). And let $G - S = (V(G) - S)$ and $G - H = (V(G) - V(H))$. If $S = \{u\}$, then we write $G - u$ for $G - S$. If there is no fear of confusion, then we use the same symbol for a graph and its vertex set. For graphs G_1 and G_2, $G_1 \cup G_2$ denotes the union of G_1 and G_2, and mG denotes the union of m copies of G. If Q is a path or a cycle with a given orientation and $x \in V(Q)$, then x^+ denotes the first successor of x on Q and x^- denotes the first predecessor of x on Q. If $x, y \in V(Q)$, then $Q[x, y]$ denotes the path of Q from x to y (including x and y) in the given direction. The notation $Q^{-x}[x, y]$ denotes the path from x to y in the opposite direction. We also write $Q[x, y] = Q[x^+, y], Q[x, y] = Q[x^-, y^-]$ and $Q(x, y) = Q[x^+, y^-]$. If Q is a path (or a cycle), say $Q = x_1, x_2, \ldots, x_t, x_1$, then we assume that an orientation of Q is given from x_1 to x_t. We say that x_i precedes x_j on Q if $i < j$. For $u, v \in V(Q)$, we define the path $Q[u, v]$ as follows; if u precedes v on Q, then $Q[u, v] = Q[u, v]$, and if v precedes u on Q, then $Q[u, v] = Q[v, u]$. If T is a tree with at least one branch and $x, y \in V(T)$, where a branch vertex of a tree is a vertex of degree at least three, then we denote the path from x to y as $T[x, y]$. For $X \subseteq V(G)$, let $d_H(X) = \sum_{v \in X} d_H(v)$. If $H = G$, then we denote $d_G(X) = d_H(X)$. For a graph G, $|G|$ is the order of G, $\delta(G)$ is the minimum degree of G, $\omega(G)$ is the number of components of G, $\alpha(G)$ is the independence number of G. If G is one vertex, that is, $V(G) = \{x\}$, then we simply write x instead of G. For an integer $t \geq 1$, let

$$
\sigma_t(G) = \min \left\{ \sum_{v \in X} d_G(v) \mid X \text{ is an independent set of } G \text{ with } |X| = t \right\},
$$

and $\sigma_t(G) = \infty$ when $\alpha(G) < t$. Note that if $t = 1$, then $\sigma_1(G) = \delta(G)$. For an integer $r \geq 1$ and two disjoint subgraphs A, B of G, we denote by (d_1, d_2, \ldots, d_r) a degree sequence from A to B such that $d_B(v_i) \geq d_i$ and $v_i \in V(A)$ for each $1 \leq i \leq r$. In

* Corresponding author.

E-mail addresses: rg@mathcs.emory.edu (R.J. Gould), hirohata@ece.ibaraki-ct.ac.jp (K. Hirohata), agkell2@mathcs.emory.edu (A. Keller).

http://dx.doi.org/10.1016/j.disc.2017.08.030

0012-365X/© 2017 Elsevier B.V. All rights reserved.
Lemma 2. Let \(G \) be a graph of sufficiently large order. If \(\sigma_t(G) \geq 2kt - (t - 1) \) for any two integers \(k \geq 2 \) and \(t \geq 1 \), then \(G \) contains \(k \) disjoint cycles.

The cases for \(t = 1, 2, 3 \) have already been shown. We add to the evidence for this conjecture by showing the following:

Theorem 1. Let \(G \) be a graph of order \(n \geq 7k + 1 \) for an integer \(k \geq 2 \). If \(\sigma_4(G) \geq 8k - 3 \), then \(G \) contains \(k \) disjoint cycles.

The degree sum conjectured above would be sharp. And in particular, the degree sum condition of Theorem 1 is sharp. Sharpness is given by \(G = K_{2k-1} + mk_1 \). The only independent vertices in \(G \) are those in \(mk_1 \). Each of these vertices has degree \(2k - 1 \).

Thus, for any \(t \) with \(1 \leq t \leq m \), \(\sigma_t(G) = t(2k - 1) = 2kt - t \), and \(G \) fails to contain \(k \) disjoint cycles as any such cycle must contain two vertices of \(K_{2k-1} \).

2. **Lemma**

In the proof of Theorem 1, we make use of the following Lemmas A, B and C that were proved by Fujita, Matsumura, Tsugaki and Yamashita in [3]. Proofs omitted in Chapter 2 appear after the proof of Theorem 1, that is, in Chapter 4.

Let \(C_1, \ldots, C_r \) be \(r \) disjoint cycles of a graph \(G \). If \(C'_1, \ldots, C'_r \) are \(r \) disjoint cycles of \(G \) and \(|\bigcup_{i=1}^{r} V(C_i')| < |\bigcup_{i=1}^{r} V(C_i)| \), then we call \(C'_1, \ldots, C'_r \) shorter cycles than \(C_1, \ldots, C_r \). We also call \(\{C_1, \ldots, C_r\} \) minimal if \(G \) does not contain shorter \(r \) disjoint cycles than \(C_1, \ldots, C_r \).

Lemma A (Fujita et al. [3]). Let \(r \) be a positive integer and \(C_1, \ldots, C_r \) be \(r \) minimal disjoint cycles of a graph \(G \). Then \(d_C(x) \leq 3 \) for any \(x \in V(G) - \bigcup_{i=1}^{r} V(C_i) \) and for any \(1 \leq i \leq r \). Furthermore, \(d_C(x) = 3 \) implies \(|C_i| = 3 \), and \(d_C(x) = 2 \) implies \(|C_i| \leq 4 \).

Lemma B (Fujita et al. [3]). Suppose that \(F \) is a forest with at least two components and \(C \) is a triangle. Let \(x_1, x_2, x_3 \) be leaves of \(F \) from at least two components. If \(d_C(x_1, x_2, x_3) \geq 7 \), then there exist two disjoint cycles in \(\langle F \cup C \rangle \) or there exists a triangle \(C' \) in \(\langle F \cup C \rangle \) such that \(\omega(\langle F \cup C \rangle - C') < \omega(F) \).

Lemma C (Fujita et al. [3]). Let \(C \) be a cycle and \(T \) be a tree with three leaves \(x_1, x_2, x_3 \). If \(d_C(x_1, x_2, x_3) \geq 7 \), then there exist two disjoint cycles in \(\langle C \cup T \rangle \) or there exists a cycle \(C' \) in \(\langle C \cup T \rangle \) such that \(|C'| < |C| \).

Lemma 2. Let \(C \) be a cycle and \(T \) be a tree with four leaves \(x_1, x_2, x_3, x_4 \). If \(d_C(x_1, x_2, x_3, x_4) \geq 9 \), then there exist two disjoint cycles in \(\langle C \cup T \rangle \) or there exists a cycle \(C' \) in \(\langle C \cup T \rangle \) such that \(|C'| < |C| \).

Proof. Let \(X = \{x_1, x_2, x_3, x_4\} \). If \(d_C(x_0) \leq 2 \) for some \(1 \leq i \leq 4 \), then \(d_C(X - \{x_0\}) \geq 7 \), and we apply Lemma C to \(X - \{x_0\} \). Otherwise, \(d_C(x) \geq 3 \) for each \(1 \leq i \leq 4 \), and we apply Lemma C to any three vertices in \(X \). □

Lemma 3. Let \(G \) be a graph satisfying the assumption of Theorem 1, and let \(C_1, \ldots, C_{k-1} \) be \(k - 1 \) minimal disjoint cycles of \(G \). Suppose that there exists a tree \(T \) with at least four leaves, which is a component of \(G - \bigcup_{i=1}^{k-1} C_i \). Then \(G \) contains \(k \) disjoint cycles.

Proof. Let \(\mathcal{C} = \bigcup_{i=1}^{k-1} C_i \), and let \(X = \{x_1, x_2, x_3, x_4\} \) be a set of leaves of \(T \). Since \(X \) is an independent set, \(d_{\mathcal{C}}(X) \geq (8k - 3) - 4 = 8k - 1 \). Then there exists a cycle \(C_i \) for some \(1 \leq i \leq k - 1 \) such that \(d_C(X) \geq 9 \). Since \(\{C_1, \ldots, C_{k-1}\} \) is minimal, there exist two disjoint cycles in \(\langle C_i \cup T \rangle \) by Lemma 2. Thus \(G \) contains \(k \) disjoint cycles. □

Lemma 4. Let \(G \) be a graph satisfying the assumption of Theorem 1, and let \(C_1, \ldots, C_{k-1} \) be \(k - 1 \) minimal disjoint cycles of \(G \). Suppose that \(H = G - \bigcup_{i=1}^{k-1} C_i \) has at least two components at least one of which is a tree \(T \) with at least three leaves. Then there exist two disjoint cycles in \(\langle C_i \cup T \rangle \) for some \(1 \leq i \leq k - 1 \) or there exists a triangle \(C \) in \(\langle H \cup C \rangle \) such that \(\omega(\langle H \cup C \rangle - C) < \omega(H) \).
Proof. Let \(\mathcal{C} = \bigcup_{i=1}^{k-1} C_i \). Let \(x_1, x_2, x_3 \) be three leaves of the tree \(T \), and let \(x_4 \) be a leaf from another component, and \(X = \{x_1, x_2, x_3, x_4\} \). Since \(X \) is an independent set, \(d_\mathcal{C}(X) \geq (8k - 3) - 4 = 8(k - 1) + 1 \). Then there exists a cycle \(C_j \) for some \(1 \leq j \leq k - 1 \) such that \(d_\mathcal{C}(X) \geq 9 \). If \(d_\mathcal{C}(x_4) < 2 \), then \(d_\mathcal{C}(x_1, x_2, x_3)) \geq 7 \). By Lemma 5, there exist two disjoint cycles in \((C \cup T) \) or there exists a cycle \(C \) in \((C \cup T) \) such that \(|C| < |C| \). Since \(|C_1, \ldots, C_{k-1} \) is minimal, the lemma holds. If \(d_\mathcal{C}(x_4) \geq 3 \), then \(C_i \) is a triangle by Lemma 4. Thus the lemma holds by Lemma 1. □

Lemma 5. Let \(C_1 \) and \(C_2 \) be two disjoint cycles such that \(|C_2| \geq 6 \). Suppose that \(C_2 \) contains vertices with at least one of the following degree sequences from \(C_2 \) to \(C_1 \). Then \((C_1 \cup C_2)\) contains two disjoint cycles \(C'_1 \) and \(C'_2 \) such that \(|C'_1| + |C'_2| < |C_1| + |C_2| \).

(i) \((2, 2, 2, 2, 2)\)
(ii) \((5, 3)\)
(iii) \((3, 1, 1, 1, 1, 1)\)
(iv) \((3, 2, 1, 1)\)
(v) \((3, 3, 1)\)

Lemma 6. Let \(H \) be a graph with two components \(H_1, H_2 \), where \(H_1 = x_1, \ldots, x_s \) (s \(\geq 1 \)) is a path and \(H_2 = y_1, \ldots, y_t \) (t \(\geq 3 \)) is a path. Let \(W = \{x_1, y_1, y_i, y_j\} \) for any \(2 \leq i \leq t - 1 \), and let \(C \) be a triangle. If there exists a degree sequence \((3, 3, 2, 0)\) or \((3, 3, 1, 1)\) from \(W \) to \(C \), then \((H \cup C)\) contains two disjoint cycles.

3. Proof of Theorem 1

Suppose that the theorem does not hold. Let \(G \) be an edge-maximal counter-example. If \(G \) is a complete graph, then \(G \) contains \(k \) disjoint cycles. Thus we may assume that \(G \) is not a complete graph. Let \(xy \notin E(G) \) for some \(x, y \in V(G) \), and define \(G' = G + xy \). Since \(G' \) is not a counter-example by the maximality of \(G, G' \) contains \(k \) disjoint cycles \(C_1, \ldots, C_k \). Without loss of generality, we may assume that \(xy \notin \bigcup_{i=1}^{k-1} E(C_i) \), that is, \(G \) contains \(k - 1 \) disjoint cycles \(C_1, \ldots, C_{k-1} \). Let \(\mathcal{C} = \bigcup_{i=1}^{k-1} C_i \) and \(H = G - \mathcal{C} \). Choose \(C_1, \ldots, C_{k-1} \) such that

1. \(\sum_{i=1}^{k-1} |C_i| \) is minimal, and
2. subject to (1), \(\omega(H) \) is minimal.

Note that any cycle \(C \) in \(\mathcal{C} \) has no chords by (1). Clearly, \(H \) is a forest, otherwise, since \(H \) contains a cycle, \(G \) contains \(k \) disjoint cycles, a contradiction. If \(H \) contains at least two components at least one of which is a tree with at least three leaves, then by Lemma 4, \(G \) contains \(k \) disjoint cycles, or contradicting (2). Thus if \(H \) contains at least two components, then \(H \) must be a collection of paths. If \(H \) has only one component, then it is a tree. If \(H \) is a tree with at least four leaves, then the theorem holds by Lemma 3. Thus if \(H \) has only one component, then \(H \) is a tree with at most three leaves.

Now, we consider two cases on \(|H| \).

Case 1. \(|H| \leq 7 \)

Let \(C \) be a longest cycle in \(\mathcal{C} \). Suppose that \(|C| \leq 7 \). Then \(|C'| \leq 7 \) for any cycle \(C' \) in \(\mathcal{C} \), and \(|\mathcal{C}| \leq 7(k - 1) \). Since \(|G| \geq 7k + 1 \), \(|H| = |G| - |\mathcal{C}| \geq (7k + 1) - 7(k - 1) = 8 \), contradicting the assumption of this case. Thus \(|C| \geq 8 \). Let \(|C| = 4t + r, t \geq 2 \) and \(0 \leq r \leq 3 \). Then there exist at least \(t \) disjoint independent sets in \(V(C) \) each of which has four vertices. By (1) and \(|C| \geq 8 \), \(d_\mathcal{C}(v) \leq 1 \) for any \(v \in V(H) \). Thus \(|E(H, C)| \leq 7 \).

Suppose that \(k = 2 \). Then \(\mathcal{C} \) has only one cycle, and \(H = G - C \). Since \(|C| \geq 8 \), \(C \) contains at least two independent sets each of which has four vertices. Let \(C_1 \) and \(C_2 \) be such sets. Since \(d_\mathcal{C}(X_i) = 8 \) for each \(i \in \{1, 2\}, d_\mathcal{C}(X_i) = 8(k - 3) - 8 = 8k - 11 \). Then \(d_\mathcal{H}(X_1 \cup X_2) \geq 16k - 22 \geq 10 \), since \(k \geq 2 \). Thus \(|E(H, C)| \geq 10 \), a contradiction.

Suppose that \(k \geq 3 \). We claim that \(|E(C, C')| \geq 8t \) for some cycle \(C' \) in \(\mathcal{C} \). Note that each of \(t \) disjoint independent sets in \(V(C) \) sends at least \(8(k - 3) - 8 = 8k - 11 \) edges out of \(C \). Since \(|E(H, C)| \leq 7 \) and \(t \geq 2 \), \(|E(C, \mathcal{C})| \geq |E(H, C)| = 7 \geq 8t(k - 2) \). Thus the claim holds. Since \(|C| = 4t + r \leq 4t + 3 \) and \(|E(C, C')|/|C| \geq 8t/(4t + 3) > 8t(4t + 4) = 2t/(t + 1) > 1 \), \(d_\mathcal{C}(v) \geq 2 \) for some \(v \in V(C) \).

Suppose that \(\max\{d_\mathcal{C}(v)\} \leq 2 \) for some \(C \). Let \(X = \{v \in V(C)|d_\mathcal{C}(v) \leq 1\} \) and \(Y = V(C) - X \). Then noting that \(t \geq 2 \) and \(r \leq 3 \),

\[
8t \leq |E(C, C')| \leq |X| + 2|Y| = (|C| - |Y|) + 2|Y| = |C| + |Y|
\Rightarrow |Y| \geq 8t - |C| = 8t - (4t + r) = 4t - r \geq 8 - 3 = 5
\]

Thus we have the degree sequence \((2, 2, 2, 2, 2)\) from \(C \) to \(C' \). By Lemma 5(i), \(\langle C \cup C' \rangle \) contains two shorter disjoint cycles, contradicting (1).

Suppose that \(h = \max\{d_\mathcal{C}(v)\} \leq 2 \) for any \(v \in V(C) \). Since \(|C'| \leq |C| = 4t + r \) by the choice of \(C \), \(d_\mathcal{C}(v) \leq |C'| \leq 4t + r \). Then since \(t \geq 2 \) and \(r \leq 3 \), \(|E(C - v^*, C')| \geq 8t - (4t + r) = 4t - r \geq 5 \). This implies that \(N_{C}(C - v^*) \neq \emptyset \). Let \(Z = \{v \in V(C)|N_{C}(v) \neq \emptyset\} \). Then \(|Z| \geq 2 \).

Suppose that \(|Z| = 2 \). Then \(d_\mathcal{C}(v) \geq 5 \) for any \(v \in Z \) by the above observations. By Lemma 5(ii), \(\langle C \cup C' \rangle \) contains two shorter disjoint cycles, contradicting (1).

Suppose that \(|Z| \geq 3 \). Since \(|E(C - v^*, C')| \geq 5 \), we may assume that the minimum degree sequence \(S \) from vertices of \(C \) to \(C' \) is at least one of \((h, 4, 1), (h, 3, 2), (h, 3, 1, 1), (h, 2, 2, 1), (h, 2, 1, 1, 1), (h, 1, 1, 1, 1, 1) \), where by the definition of \(h \),
if \(S = (h, 4, 1) \), then \(h \geq 4 \), and if \(S \) is the other degree sequence, then \(h \geq 3 \). If \(S = (h, 4, 1) \) or \((h, 3, 2) \), then by Lemma 5(v), \((C \cup C') \) contains two shorter disjoint cycles. If \(S = (h, 3, 1, 1), (h, 2, 2, 1) \) or \((h, 2, 1, 1, 1) \), then by Lemma 5(iv), \((C \cup C') \) contains two shorter disjoint cycles. If \(S = (h, 1, 1, 1, 1) \), then by Lemma 5(iii), \((C \cup C') \) contains two shorter disjoint cycles.

Case 2. \(|H| \geq 8 \).

Claim 1. \(H \) is connected.

Proof. Suppose to the contrary that \(H \) is disconnected. Then note that \(H \) is a collection of paths. Suppose that \(X \) is an independent set that consists of four leaves from at least two components in \(H \) such that \(d_H(X) \leq 4 \). Then \(d_H(X) \geq (8k - 3) - 4 = 8(k - 1) + 1 \), and \(d_C(X) \geq 9 \) for some \(1 \leq i_0 \leq k - 1 \). Thus \(d_C(x) \geq 3 \) for some \(x \in X \), and \(|C_0| = 3 \) by Lemma A. By Lemma 1 and (2), \((H \cup C_0) \) contains two disjoint cycles, and \(G \) contains \(k \) disjoint cycles, a contradiction. Thus \(H \) does not contain such an independent set.

Now, we consider three cases on \(\alpha(H) \).

Case 1. \(\alpha(H) \geq 4 \).

We take four leaves \(x_1, x_2, x_3, x_4 \), one from each component of \(H \). Then \(X = \{x_1, x_2, x_3, x_4\} \) is an independent set such that \(d_H(X) \leq 4 \), a contradiction.

Case 2. \(\alpha(H) = 3 \).

We take three leaves \(x_1, x_2, x_3 \), one from each component of \(H \). Since \(|H| \geq 8 \), some component of \(H \), say \(H_1 \), has the order at least 3. Now, we take the other leaf from \(H_1 \), call it \(x_4 \). Then \(X = \{x_1, x_2, x_3, x_4\} \) is an independent set such that \(d_H(X) \leq 4 \), a contradiction.

Case 3. \(\alpha(H) = 2 \).

Let \(H_1, H_2 \) be two distinct components in \(H \). Without loss of generality, we may assume that \(|H_1| \leq |H_2| \). Suppose that \(|H_1| \geq 5 \). Then we take two leaves from each component of \(H \), yielding a set \(X \) of four independent vertices such that \(d_H(X) = 4 \), a contradiction. Suppose that \(|H_1| \leq 4 \). Since \(|H_1| \geq 8, |H_2| \leq 6 \). Let \(H_1 = x_1, x_2, x_3, x_4 \). Suppose that \(|H_2| = 4 \), \(|H_3| = 3 \), \(|H_4| = 2 \), and \(|H_5| = 1 \). Thus \(d_H(X) \leq 4 \), a contradiction.

Suppose that \(|C_0| = 4 \). Let \(C_0 = v_1, v_2, v_3, v_4 \). Suppose that \(d_H(u) \leq 2 \) for any \(u \in W \) by Lemma A. Thus we must have degree sequence \((2, 2, 2, 2) \). If some \(u \in W \) has degree \(d_H(u) \geq 3 \), then we must have \(d_H(X) \leq 5 \), a contradiction.

Subcase 1. \(S = (3, 3, 2, 0) \) or \(S = (3, 3, 1, 1) \).

By Lemma 6, we can find two disjoint cycles in \((C_0 \cup H) \), a contradiction.

Subcase 2. \(S = (3, 3, 2, 1) \).

If \(d_C(y_3) = 1 \), then \(\{x_1, y_3, y_4\} \) satisfies the conditions of Lemma B, we get a contradiction. Thus \(d_C(y_3) \geq 2 \).

First, suppose that \(d_C(y_1) = 1 \). Let \(v_1 \in N_C(x_1) \). Note that \(d_C(y_1) \geq 2 \) for each \(v_i \in \{1, 3, 5\} \). If \(v_1 \notin N_C(y_0) \) for some \(i_0 \in \{1, 3, 5\} \), then \(d_C(y_1) = 2 \), and \(C_0 = y_0, v_3, v_2, y_3 \) is a 3-cycle. Since \(d_C(y_1) = 3 \) for some \(i_1 \in \{1, 3, 5\} \), \(v_1 \in N_C(y_1) \). Then \((C_0 \cup H) \sim C_0 \) is connected, contradicting (2) (see Fig. 1.1). Thus \(v_1 \in N_C(y_1) \). Since \(d_C(y_3) = 2 \) for some \(i_2 \in \{1, 3, 5\} \), \(C_0 = y_3, v_2, v_3, y_1 \) is a 3-cycle. Then \((C_0 \cup H) \sim C_0 \) is connected, contradicting (2).

Next, suppose that \(d_C(y_1) = 2 \). Suppose that \(d_C(y_1) = 3 \). If \(v_1 \in N_C(y_1) \) for some \(m_1 \in \{1, 3, 5\} \), then \(H^2 \{y_1, y_2, y_3, y_4\} \) is a 2-cycle. Then \(\{x_1, x_2, x_3, x_4\} \) is two disjoint cycles. Thus \(C_0 \sim N_C(y_i) \) for each \(i \in \{1, 3, 5\} \), \((C_0 \cup H) \sim C_0 \) is connected, contradicting (2) (see Fig. 2).
Finally, suppose that $d_{C_0}(x_1) = 3$. Since $d_{C_0}(y_0) = d_{C_0}(y_9) = 2$ for some $i_0, j_0 \in \{1, 3, t\}$ with $i_0 < j_0$, we may assume that $v_1 \in N_{C_0}(y_0) \cap N_{C_0}(y_9)$. Then $H_2[y_0, y_9]$, v_1, y_0 is a cycle. Since $d_{C_0}(x_1) = 3$, v_3, v_2, x_1 is the other disjoint cycle.

Subcase 3. $S = \{2, 2, 2, 2\}.$

Without loss of generality, we may assume that $N_{C_0}(x_1) = \{v_1, v_2\}$. If $v_3 \in N_{C_0}(y_0) \cap N_{C_0}(y_9)$ for some $i_0, j_0 \in \{1, 3, t\}$ with $i_0 < j_0$, then $H_2[y_0, y_9]$, v_3, y_0 and x_1, v_2, v_1, x_1 are two disjoint cycles. Thus at most one in $\{y_1, y_3, y_t\}$ can be adjacent to v_3. Suppose that $v_3 \in N_{C_0}(y_0)$ for some $i_0 \in \{1, 3, t\}$. Since $d_{C_0}(y_0) = 2$, we may assume that $v_2 \in N_{C_0}(y_0)$. Then $C_0' = y_0, v_3, v_2, y_0$ is a 3-cycle. For each $i \in \{1, 3, t\} - \{i_0\}, N_{C_0}(y_i) = \{v_1, v_2\}$. Then $(C_0 \cup H) - C_0'$ is connected, contradicting (2). Thus $v_3 \notin N_{C_0}(y_i)$ for each $i \in \{1, 3, t\}$, that is, $N_{C_0}(y_t) = \{v_1, v_2\}$. Then $C_0'' = H_2[y_1, y_3], v_2, y_1$ is a 3-cycle, and $(C_0 \cup H) - C_0''$ is connected, contradicting (2). This completes the proof of **Claim 1.**

Claim 2. H is a path.

Proof. Suppose that H is not a path. Then recall that H is a tree with one branch vertex of degree 3 in H. Then H has three leaves, say x_1, x_2, x_3. Removing the branch vertex in H, there exist three disjoint paths each of which has one in $\{x_1, x_2, x_3\}$ as an endpoint. Also, some path has a length at least two, say P, since there exist at least seven vertices distributed over three paths. Without loss of generality, we may assume that x_1 is one of the endpoints of P, and let the other endpoint be x_4. Let $X = \{x_1, x_2, x_3, x_4\}$ (see Fig. 3). Then X is an independent set. Since $d_H(X) = 5, d_{\varphi}(X) \geq (8k - 3) - 5 = 8(k - 1)$. Thus there exists a cycle C_0 in φ such that $d_{C_0}(X) \geq 8$ for some $1 \leq i_0 \leq k - 1$. Then $d_{C_0}(x) \geq 2$ for some $x \in X$. By Lemma A, $d_{C_0}(x) \leq 3$ and $|C_0| \leq 4$.

Case 1. $|C_0| = 3.$
Let $C_0 = v_1, v_2, v_3, v_4$. Suppose that $d_{C_0}(x) = 2$ for each $x \in X$. Let $v_1, v_2 \in N_{C_0}(x_1)$. Since $|C_0| = 3, N_{C_0}(x_2) \cap N_{C_0}(x_3) \neq \emptyset$. If $v_3 \in N_{C_0}(x_2) \cap N_{C_0}(x_3)$, then $H[x_2, x_3], v_3, x_2$ and x_1, v_2, v_1 are two disjoint cycles. Thus without loss of generality, we may assume that $v_1 \in N_{C_0}(x_2) \cap N_{C_0}(x_3)$. Then $H[x_2, x_3], v_1, x_2$ is a cycle. Since $d_{C_0}(x_2) = 2, N_{C_0}(x_2) \neq \emptyset$. If $v_3 \in N_{C_0}(x_4)$, then $H[x_1, x_4], v_3, x_1$ is the other disjoint cycle, and if $v_3 \in N_{C_0}(x_4)$, then $H[x_1, x_4], v_3, x_1$ is the other disjoint cycle. Thus there exists at least one vertex $x \in X$ such that $d_{C_0}(x) = 3$. Then the minimum possible degree sequences from X to C_0 are $(3, 3, 2, 0), (3, 3, 1, 1)$ or $(3, 2, 2, 1)$.

We claim that if there exists a degree sequence $(3, 3, 1, 0)$ from X to C_0, then there exist two disjoint cycles in $(H \cup C_0)$.

First, suppose that $d_{C_0}(x_0) = 1$ for some $1 \leq j_0 \leq 3$. Let $v_1 \in N_{C_0}(x_0)$. If $d_{C_0}(x_4) = 0$, then since $d_{C_0}(x_4) = 3$ for each $m \in \{1, 2, 3\} - \{j_0\}, H[x_0, x_m], v_1, x_m$ is a cycle. Since $d_{C_0}(x_m) = 3$ for $m \in \{1, 2, 3\} - \{j_0, m\}, x_m$, v_3, v_2, x_m is the other disjoint cycle. If $d_{C_0}(x_4) = 3$, then $H[x_0, x_4], v_1, x_4$ is a cycle, and since $d_{C_0}(x_m) = 3$ for some $m_0 \in \{1, 2, 3\} - \{j_0, x_m, v_3, v_2, x_m\}$ is the other disjoint cycle. Next, suppose that $d_{C_0}(x_4) = 1$. Let $v_1 \in N_{C_0}(x_4)$. Then $d_{C_0}(x_m) = 3$ and $d_{C_0}(x_m) = 3$ for some $1 \leq m_1 < m_2 \leq 3$, and $H[x_1, x_4], v_1, x_1$ and x_4, v_3, x_2, x_m are two disjoint cycles.

Thus by the claim, we have only to consider the degree sequence $(3, 2, 2, 1)$. If the degree 3 vertex does not lie on the path connecting the degree 2 vertices, then since the two vertices with degree 2 must have a common neighbor by $|C_0| = 3$, we can easily find two disjoint cycles. Thus the degree 3 vertex does lie on the path connecting the two vertices with degree 2. Then $d_{C_0}(x_4) = 3, d_{C_0}(x_1) = 2$, and we may assume that $d_{C_0}(x_2) = 1$ and $d_{C_0}(x_3) = 2$. Let $v_1 \in N_{C_0}(x_2)$. Since $|N_{C_0}(x_1) \cap N_{C_0}(x_4)| = 2$, there exists $v_{h_0} \in N_{C_0}(x_1) \cap N_{C_0}(x_4)$ for some $h_0 \in \{2, 3\}$. Then $H[x_1, x_4], v_{h_0}, x_4$ is a cycle. Since $d_{C_0}(x_2) = 2$, there exists $v_{h_1} \in N_{C_0}(x_3)$ for some $h_1 \in \{1, 2, 3\} - \{h_0\}$. If $h_1 = 1$, then $H[x_2, x_3], v_1, x_2$ is the other disjoint cycle, and if $h_1 = 2, 3$, then $H[x_2, x_3], v_{h_1}, x_1, v_2, x_3$ is the other disjoint cycle.

Case 2. $|C_0| = 4$.

Let $C_0 = v_1, v_2, v_3, v_4, v_1$. By Lemma A, $d_{C_0}(x) = 2$ for each $x \in X$. Since $d_{C_0}(X) \geq 8, d_{C_0}(x) = 2$ for each $x \in X$. Any vertex in X does not have consecutive neighbors in C_0, otherwise, we can immediately find a 3-cycle, contradicting (1). Thus for each $x \in X$, either $N_{C_0}(x) = \{v_1, v_3\}$ or $N_{C_0}(x) = \{v_2, v_4\}$.

Subcase 1. All four vertices in X have the same two neighbors in C_0.

We may assume that $N_{C_0}(x) = \{v_1, v_3\}$. Then $H[x_1, x_4], v_1, x_1$ and $H[x_2, x_3], v_2, x_2$ are two disjoint cycles.

Subcase 2. Three vertices in X have the same two neighbors in C_0.

Suppose that x_1, x_4 have the same two neighbors in C_0. Then we may assume that $v_1 \in N_{C_0}(x_1) \cap N_{C_0}(x_4)$, and $H[x_1, x_4], v_1, x_1$ is a cycle. Since $d_{C_0}(x_j) = 2$ for each $j \in \{2, 3\}, N_{C_0}(x_1) \neq \emptyset$. Then $(H[x_2, x_3] \cup (C_0 - \{v_1\}))$ contains the other disjoint cycle. Suppose that x_1, x_4 do not have the same two neighbors in C_0. Since x_2, x_3 have the same two neighbors in C_0, we repeat the above arguments, replacing x_1, x_4 with x_2, x_3.

Subcase 3. Two vertices of X have the same two neighbors in C_0, and the other two vertices of X have the same two neighbors, different from the neighbors of the first two.

Suppose that x_1, x_4 have the same two neighbors. We may assume that $v_1 \in N_{C_0}(x_1) \cap N_{C_0}(x_4)$. Then $H[x_1, x_4], v_1, x_1$ is a cycle. Since x_2, x_3 have the same two neighbors, different from the neighbors of x_1 and x_4, $H[x_2, x_3], v_2, v_3$ is the other disjoint cycle. Suppose that x_1, x_4 have different neighbors. We may assume that $v_1 \in N_{C_0}(x_1)$ and $v_2 \in N_{C_0}(x_4)$. Then $H[x_1, x_4], v_2, v_1, x_1$ is a cycle. Since x_2, x_3 have the neighbors, different from $v_1, v_2, (H[x_2, x_3] \cup \{v_3, v_4\})$ contains the other disjoint cycle. \(\square\)

Since H is a path by Claim 2, let $H = x_1, x_2, \ldots, x_t$ (t ≥ 8). Let $X = \{x_1, x_3, x_5, x_1\}$. Then X is an independent set with $d_{\overline{H}}(X) = 6$, and $d_{\overline{H}}(X) \geq (8k - 3) - 6 = 8k - 9 \geq 7(k - 1), \text{ since } k \geq 2$. Thus either $d_{C_0}(X) \geq 8$ for some cycle $C_0 \subset \overline{H}$, or $d_{C}(X) = 7$ for every cycle C in \overline{H}. If $d_{C}(X) \geq 8$ for some cycle $C \subset \overline{H}$, then we have the minimum possible degree sequences $(3, 3, 2, 0), (3, 3, 1, 1), (3, 2, 2, 1)$ or $(2, 2, 2, 2)$ from X to C. If $d_{C}(X) = 7$ for some cycle $C \subset \overline{H}$, then we have the minimum possible degree sequences $(3, 3, 1, 0), (3, 2, 1, 1), (3, 2, 2, 0)$ or $(2, 2, 2, 1)$ from X to C.

Subclaim 1. If there exists a degree sequence $(3, 3, 1, 0)$ from X to C, then there exist two disjoint cycles in $(H \cup \overline{C})$.

Proof. By Lemma A, $|C| = 3$. Let $C = v_1, v_2, v_3, v_4$. We may assume that $d_{C_0}(x_0) = 1$ for some $i_0 \in \{1, 3\}$, otherwise, $i_0 \in \{5, t\}$, and we may argue in a similar manner from the other end of the path H. Let $v_1 \in N_{C_0}(x_0)$. First, suppose that $i_0 = 1$, that is, $d_{C}(x_1) = 1$. Then $d_{C}(x_1) = d_{C}(x_2) = 3$ for some $j_1, j_2 \in \{3, 5, t\}$ with $j_1 < j_2$. Thus $H[x_1, x_2], x_1, x_1$ and...
Proof. Let $v_1, v_2, \ldots, v_q, v_1$, where $q = |C|$. We may assume that $d_C(x_0) = 1$ for some $i_0 \in \{5, t\}$, otherwise, $i_0 \in \{1, 3\}$, and we may argue in a similar manner from the other ends of the path H. Let $v_1 \in N_C(x_0)$.

Case 1. $|C| = 4$. Then $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3$, and $d_C(x_0) = 2$ for each $i \in \{1, 3\}, N_C(x_1) \cap N_C(x_3) \neq \emptyset$, contradicting our assumption. Thus $|C| = 3$, and either $N_C(x_1) \cap N_C(x_3) \neq \emptyset$, or $|C| = 3
Suppose that $N_C(x_4) \neq \emptyset$. Then replacing x_6 in the above argument with x_4 and x_5 with x_1, we can prove this case by the same arguments above. Thus $N_C(x_i) = \emptyset$ for each $i \in \{4, 6\}$. This implies that $d_C(x_2) = 3$. Then x_0, x_2, v_1, x_0 and x_5, v_3, v_2, x_5 are two disjoint cycles. □

4. Proofs of Lemmas

4.1. Proof of Lemma 1

Let $F, C, x_i (1 \leq i \leq 4)$ be as in Lemma 1. Let F_1, F_2 be two components of F, $C = v_1, v_2, v_3, v_4$, and $X = \{x_1, x_2, x_3, x_4\}$. Now, we consider two cases.

Case 1. At most two vertices of X lie in the same component of F.

Since $d_C(X) \geq 5$, $d_C(x_i) \geq 3$ for some $1 \leq i \leq 4$. By $|C| = 3$, $d_C(x_i) \leq 3$ for each $1 \leq i \leq 4$. Thus $d_C(x_6) = 3$. Without loss of generality, we may assume that $i_0 = 1$, that is, $d_C(x_1) = 3$. Then $d_C(x_2, x_3, x_4) \geq 6$. Also, we may assume that $d_C(x_2) \geq d_C(x_3) \geq d_C(x_4)$. Now, we claim that $d_C(x_2, x_3) \geq 4$. Otherwise, if $d_C(x_2, x_3) \leq 3$, then $d_C(x_6) \leq 1$ for some $j_0 \in \{2, 3\}$. That implies that $d_C(x_4) \leq 1$, since $d_C(x_4)$ is the smallest degree in x_2, x_3, x_4. Then $d_C(x_2, x_3) \leq 3 + 1 = 4$, a contradiction. Thus the claim holds. Noting our assumption of this case, $\{x_1, x_2, x_3\}$ is a set of leaves from at least two components of F. Since $d_C(x_1, x_2, x_3) \geq 3 + 4 = 7$, Lemma B applies, completing this case.

Case 2. Three vertices of X lie in the same component of F.

Without loss of generality, we may assume that $x_1, x_2, x_3 \in V(F_1), x_4 \in V(F_2)$, and $d_C(x_1) \geq d_C(x_2) \geq d_C(x_3)$. Recall that $d_C(X) \geq 9$. It follows that the minimum possible degree sequence 5 from X to C is $(3, 3, 3, 0), (3, 3, 2, 1)$ or $(3, 2, 2, 2)$.

Subcase 1. $S = (3, 3, 3, 0)$.

If $d_C(x_6) = 0$ for some $1 \leq i \leq 3$, then $i_0 = 3$, that is, $d_C(x_3) = 0$. Now, we take $\{x_1, x_2, x_4\}$ that is a set of leaves from at least two components of F. Since $d_C(x_1, x_2, x_4) = 9$, Lemma B applies. If $d_C(x_4) = 0$, then $d_C(x_1) = 3$ for each $1 \leq i \leq 3$. Since all the x_is are leaves, x_3 does not lie on the path in F_1 connecting x_1 and x_2. Then $F_1[x_1, x_2], v_1, x_1$ and x_3, v_2, x_3 are two disjoint cycles in $(F \cup C)$.

Subcase 2. $S = (3, 3, 2, 1)$.

Take $\{x_1, x_2, x_4\}$. If $d_C(x_4) \in \{1, 2\}$, then $d_C(x_1, x_2) \geq 6$. If $d_C(x_4) = 3$, then $d_C(x_1, x_2) \geq 5$. Since $d_C(x_1, x_2, x_4) \geq 7$ for all cases, Lemma B applies.

Subcase 3. $S = (3, 2, 2, 2)$.

Take $\{x_1, x_2, x_4\}$. If $d_C(x_4) = 2$, then $d_C(x_1, x_2) \geq 5$. If $d_C(x_4) = 3$, then $d_C(x_1, x_2) \geq 4$. Since $d_C(x_1, x_2, x_4) \geq 7$ for all cases, Lemma B applies. □

4.2. Proof of Lemma 5

Proof of (i). Let v_1, v_2, v_3, v_4, v_5 be the vertices such that $d_C(v_i) = 2$ for each $1 \leq i \leq 5$, appearing in this order on C. Let $w_1, w_2 \in N_C(v_1)$ appear in this order on C. The neighbors of v_1 partition C_1 into two intervals $C_1[w_1, w_2]$ and $C_1[w_2, w_1]$. We claim that each of v_2, v_3, v_4, v_5 has one neighbor in different interval of C_1.

First, suppose that v_1, v_2, v_3, v_4 for some $2 \leq i_1 < i_2 < i_3 \leq 5$ have both their neighbors in a common interval of C_1, say $C_1[w_1, w_2]$. We may assume that at least one of their neighbors is not w_2. Let $z_1 \in N_C(w_1,w_2)(v_1)$ and $z_2 \in N_C(w_1,w_2)(v_2)$. Then $C_1[z_1, z_2, C_2, v_3, v_4, v_5, z_0]$, and $C_1[w_2, w_1]$, v_1, v_2 are shorter two disjoint cycles, since v_3 is not used.

Next, suppose that v_1, v_2, for some $2 \leq i_1 < i_2 \leq 5$ have both their neighbors in a common interval of C_1, say $C_1[w_1, w_2]$. Then we may assume that $i_1 = 2$ and $i_2 = 5$, otherwise, we can prove the other pairs of i_1 and i_2 by the same arguments above. Let $z_1 \in N_C(w_1,w_2)(v_2)$ and $z_2 \in N_C(w_1,w_2)(v_5)$. If $N_C(w_1, w_2)(v_1) \neq \emptyset$ for some $i_0 \in \{3, 4\}$, then there exist shorter two disjoint cycles. Thus $N_C(w_1, w_2)(v_j) = \emptyset$ for each $j \in \{3, 4\}$. Since $d_C(v_j) = 2$ for each $j \in \{3, 4\}$, $N_C(w_1, w_2)(v_j) = \emptyset$. Let $z_4 \in N_C(v_1,v_2)(v_3)$ and $z_4 \in N_C(v_2,v_1)(v_4)$. Then $C_1[z_1, z_2, C_2, v_3, v_4, v_5, z_3]$, and $C_1[z_1, z_4, C_2, v_1, v_2, z_0]$, $C_1[v_2, v_3, v_4]$ are shorter two disjoint cycles, since v_5 is not used.

Finally, suppose that v_0 for some $2 \leq i_0 \leq 5$ has both the neighbors in an interval of C_1, say $C_1[w_1, w_2]$. Then we have only to consider $i_0 = 2$ or $i_0 = 3$, otherwise, we take a cycle from v_1 in the opposite direction. First, suppose that $i_0 = 2$. Let $x_1, x_2 \in N_C[w_1,w_2](v_2)$, appearing in this order on C. If $x_2 \neq w_2$, then $C_1[x_1, x_2, v_1, x_1]$ and $C_1[w_1, w_2, v_1]$, v_1, w_2 are shorter two disjoint cycles, since v_3 is not used. Thus $x_2 = w_2$. Let $y_1, y_2 \in N_C(v_3)$, appearing in this order on C. Suppose that $y_1 \in C_1[w_1, w_2]$. Then $C_1[x_1, y_1, C_2, v_2, v_1, x_1]$ and $C_1[w_1, w_2, v_1]$, v_1, w_2 are shorter two disjoint cycles, since v_4 is not used. Thus $y_1 \notin C_1[w_1, w_2]$, that is, $y_1 \in C_1[w_2, w_1]$. Note that $y_2 \in C_1[w_2, w_1]$. If $y_1 \neq w_2$, then $C_1[x_1, w_2, v_1, x_1]$ and $C_1[y_1, v_3, y_2]$, v_2 are shorter two disjoint cycles, since v_3 is not used. Thus $y_1 = w_2$. If $y_2 \neq w_2$, then $C_1[w_2, y_2]$, v_2, w_2 and $C_1[w_1, x_1]$, $C_2[v_2, v_1]$, w_1 are shorter two disjoint cycles, since v_4 is not used. Thus $y_2 = w_1$. Let $z_1, z_2 \in N_C(v_4)$, appearing in this order on C. Suppose that $z_1 \in C_1[w_1, w_2]$. Then $C_1[w_1, z_1, C_2[v_4, v_3], v_1, C_2[v_2, v_1, z_0]$, $C_1[w_2, z_1]$, $C_2[v_4, v_3]$, w_2 are shorter two disjoint cycles, since v_3 is not used. Next, suppose that $i_0 = 3$. Then, by the same arguments as the case where $i_0 = 2$, we have shorter two disjoint cycles, replacing v_2 with v_3.

Thus each of v_2, v_3, v_4, v_5 has one neighbor in each interval of C_1. Let $x \in N_{C_1[w_1,w_2]}(v_2), y \in N_{C_1[w_1,w_2]}(v_5), z \in N_{C_1[w_1,w_2]}(v_4), u \in N_{C_1[w_1,w_2]}(v_3)$. Then $C_1^{+}[x, y], C_1^{+}[v_2, v_3], x$ and $C_1^{-}[z, u], C_1^{-}[v_3, v_4], z$ are shorter two disjoint cycles, since v_1 is not used. □

Proof of (ii). Let $v_1, v_2 \in V(C_2)$ such that $d_{C_2}(v_1) = 5$ and $d_{C_2}(v_2) = 3$, appearing in this order on C_2. Let $w_1, w_2, w_3, w_4, w_5 \in N_{C_1}(v_1)$, appearing in this order on C_1, and let $u_1, u_2, u_3 \in N_{C_1}(v_2)$, appearing in this order on C_1. The neighbors of v_1 partition C_1 into five intervals $C_1[w_1, w_{i+1}], 1 \leq i \leq 5$ (mod 5). Suppose that $u_0, u_0 \in C_1[w_{m_0}, w_{m_0+1}]$ (mod 5) for some $1 \leq i_0 < j_0 \leq 3$ and for some $1 \leq m_0 \leq 5$. Without loss of generality, we may assume that $i_0 = 1, j_0 = 2$ and $m_0 = 1$. Then $C_1[u_1, u_2], v_2, u_1$ and $C_1[w_3, w_4], v_1, w_3$ are shorter two disjoint cycles, since w_1 is not used. Thus neighbors of v_2 are contained in different intervals. Since C_1 is partitioned into five intervals, some two neighbors of v_2 lie in neighboring intervals, say $u_1 \in \{w_1, w_2\}$ and $u_2 \in C_1[w_2, w_3]$. Then $C_1[u_1, u_2], v_2, u_1$ and $C_1[w_4, w_5], v_1, w_4$ are shorter two disjoint cycles, since w_1 is not used. □

Proof of (iii). Let $v_1, v_2, v_3, v_4, v_5, v_6$ be the vertices on C_2 with the degree sequence $(3, 1, 1, 1, 1, 1)$, appearing in this order on C_2. Without loss of generality, we may assume that $d_{C_1}(v_1) = 3$ and $d_{C_1}(v_2) = 2$ and $d_{C_1}(v_i) = 1$ for each $i \in \{3, 4, 5\}$. Suppose that v_1, v_2 are in this order on C_2. Let $w_1, w_2, w_3 \in N_{C_1}(v_1)$ be in this order on C_1, and let $u_1, u_2 \in N_{C_1}(v_2)$ be in this order on C_1. Let v_3, v_4 be in this order on C_2. Let $z_1 \in N_{C_1}(v_3)$, and let $z_2 \in N_{C_1}(v_4)$. The neighbors of v_1 partition C_1 into three intervals: $C_1[w_1, w_2], C_1[w_2, w_3], C_1[w_3, w_1]$. If v_2 has both its neighbors in the same interval in C_1, then we can find shorter two disjoint cycles. If the neighbors of v_2 are in two different intervals of C_1 and neither is in $\{w_1, w_2\}$, then we can also find shorter two disjoint cycles. Thus the neighbors of v_2 are in two different intervals of C_1 and at least one of them is at an endpoint of these intervals. Without loss of generality, we may assume that $u_1 \in C_1[w_1, w_2]$ and $u_2 \in C_1[w_2, w_3]$. Now, we consider two cases.

Case 1. $v_3, v_4 \in C_2(v_1, v_2)$ or $v_3, v_4 \in C_2(v_2, v_1)$.

Without loss of generality, we may assume that $v_3, v_4 \in C_2(v_1, v_2)$. If $z_2 \in C_1[w_1, w_3], C_2[v_4, v_2], v_1$ and $C_1[w_3, w_1], v_1, w_3$ are shorter two disjoint cycles, since v_3 is not used. If $z_2 \in C_1[w_3, w_1], C_1[v_2, v_4], v_2$ and $C_1[w_1, w_2], v_1, w_1, v_3$ are shorter two disjoint cycles, since v_3 is not used. Thus $z_2 = w_1$.

If $u_2 \in C_1[w_2, w_3], C_1[u_1, u_2], v_2, u_1$ and $C_1[w_3, w_1], v_1, w_3$ are shorter two disjoint cycles, since v_3 is not used. Thus $u_2 = w_3$.

If $z_1 \in C_1[w_3, w_1], C_1[v_3, v_1], z_1$ and $C_1[w_1, w_3], v_3$ are shorter two disjoint cycles, since v_3 is not used. Thus $z_1 \in C_1[w_1, w_3]$.

Suppose that $u_1 \in C_1[w_1, w_3]$. If $z_1 \in C_1[w_1, w_3], C_1[w_3, w_1], v_1, w_3$ are shorter two disjoint cycles, since v_3 is not used. If $z_1 \in C_1[w_1, w_3], C_1[w_3, w_1], v_1, w_3$ are shorter two disjoint cycles, since v_3 is not used. If $z_1 \in C_1[w_1, w_3], C_1[w_3, w_1], v_1, w_3$ are shorter two disjoint cycles, since v_3 is not used. Thus $u_1 \in C_1[w_1, w_3]$.

Now, we consider two disjoint cycles $C' = w_1, C_2[v_1, v_4], v_1$ and $C'' = C_1[w_1, w_3], v_2$. Note that $|C_2| \geq 6$ if $C_2(v_4, v_2) \neq \emptyset$ or $C_2(v_2, v_2) \neq \emptyset$, then C' and C'' are shorter two disjoint cycles. Thus $C_2(v_4, v_2) = \emptyset$ and $C_2(v_2, v_1) = \emptyset$. First, suppose that $z_1 \in C_1[w_2, w_3]$. If $C_2(v_2, v_1) \neq \emptyset$, then $C_1[w_3, w_1], v_1, w_3$ and $C_2(v_2, v_3), C_1[w_2, z_1], v_3$ are shorter two disjoint cycles. If $C_2(v_2, v_3) \neq \emptyset$, then $C_1[w_1, w_3], v_1, w_3$ and $C_2[v_3, v_1], v_1, w_3$ are shorter two disjoint cycles. Next, suppose that $z_1 = w_3$. If $C_2(v_3, v_3) \neq \emptyset$, then $C_1[w_1, w_3], v_1, w_3$ and $C_2[v_3, v_2], v_2, v_3$ are shorter two disjoint cycles. If $C_2(v_3, v_3) \neq \emptyset$, then $C_1[v_1, v_3], v_3, v_1$ and $C_1[w_1, w_3], C_2[v_3, v_2], v_3$ are shorter two disjoint cycles.

Case 2. $v_3 \in C_2(v_1, v_2)$ and $v_4 \in C_2(v_2, v_1)$.

If $z_1 \in C_1[w_3, w_1], C_1[w_3, w_1], v_1, w_3$ are shorter two disjoint cycles, since v_4 is not used. If $z_1 \in C_1[w_3, w_1], C_1[w_3, w_1], v_1, w_3$ are shorter two disjoint cycles, since v_4 is not used. Thus $z_1 = w_1$. Then $C_1[w_1, w_3], v_1, w_3$ and $C_1[w_1, w_3], v_1, w_3$ are shorter two disjoint cycles, since v_4 is not used. □

Proof of (v). Let v_1, v_2, v_3 be the vertices on C_3 with the degree sequence $(3, 3, 1)$. Suppose that v_1, v_2, v_3 exist in this order on C_3. Without loss of generality, we may assume that $d_{C_3}(v_i) = 3$ each $i \in \{1, 2, 3\}$ and $d_{C_3}(v_1) = 1$. Suppose that $w_1, w_2, w_3 \in N_{C_1}(v_1)$ exist in this order on C_1. Let $W = \{w_1, w_2, w_3\}$. These neighbors of v_1 partition C_1 into three intervals: $C_1[w_1, w_2], C_1[w_2, w_3], C_1[w_3, w_1]$. Let $u_1, u_2, u_3 \in N_{C_1}(v_2)$ and suppose that u_1, u_2, u_3 are in this order on C_1.

Case 1. Some two neighbors of v_2 are in the same interval of C_1.

Without loss of generality, we may assume that $u_1, u_2 \in C_1[w_1, w_2]$. Then $C_1[u_1, u_2], v_2, u_1$ and $C_1[w_3, w_1], v_3, w_3$ are shorter two disjoint cycles, since v_1 is not used.

Case 2. No two neighbors of v_2 are in the same interval of C_1.
Then $u_1 \in C_1(w_1, w_2), u_2 \in C_1(w_2, w_3)$, and $u_3 \in C_1(w_3, w_1)$. First, suppose that $u_{i_0}, u_{j_0} \notin W$ for some $1 \leq i_0 < j_0 \leq 3$. Without loss of generality, we may assume that $i_0 = 1$ and $j_0 = 2$, that is, $u_1 \in C_1(w_1, w_2)$ and $u_2 \in C_1(w_2, w_3)$. Then $C_1[u_1, u_2], v_2, u_1$ and $C_1[w_3, w_1], v_1, w_3$ are two shorter two disjoint cycles, since v_3 is not used.

Next, suppose that $u_{i_0} \notin W$ for only some $1 \leq i_0 \leq 3$. Without loss of generality, we may assume that $i_0 = 1$, that is, $u_1 \in C_1(w_1, w_2)$. Then note that $u_3 = w_1, C_1[w_1, u_1], v_2, w_1$ and $C_1[w_2, w_3], v_1, w_2$ are two shorter two disjoint cycles, since v_3 is not used.

Finally, suppose that $u_i = w_{i+1} \pmod{3}$ for each $1 \leq i \leq 3$. Without loss of generality, we may assume that $v_2 z_1 \in E(G)$ for $z_1 \in (w_2, w_3)$. Now, we have two choices for constructing shorter two disjoint cycles. We may construct $C_1[w_1, w_2], v_2, w_1$ and $C_1[z_1, w_3], C_2[v_1, v_3], z_1$, or $C_1[w_1, w_2], v_1, w_1$ and $C_1[z_1, w_3], C_2[v_2, v_3], z_1$. Since $|C_2| \geq 6$, one of these two choices must leave out a vertex of C_2, and hence we may form shorter two disjoint cycles. □

4.3. Proof of Lemma 6

Let $C = v_1, v_2, v_3, v_1$.

Case 1. The sequence is $(3, 3, 2, 0)$.

Suppose that $d_C(x_1) = 0$. Then $d_C(y_{i_0}) = 3$ for some $i_0 \in \{1, i, t\}$, and we may assume that $i_0 = 1$, that is, $d_C(y_1) = 3$. Since $d_C(y_i) \geq 2$ for each $r \in \{i, t\}$ and $|C| = 3$, $v_{m_0} \in N_C(y_i) \cap N_C(y_j)$ for some $1 \leq m_0 \leq 3$. Without loss of generality, we may assume that $m_0 = 1$. Then $H_2[y_1, y_2], v_1, y_1$ and v_1, v_3, v_2, y_1 are two disjoint cycles.

Suppose that $d_C(x_1) = 2$. Without loss of generality, we may assume that $v_1, v_2 \in N_C(x_1)$. Then x_1, v_2, v_1, x_1 is a cycle. Since $d_C(y_{i_0}) = d_C(y_{j_0}) = 3$ for some $i_0, j_0 \in \{1, i, t\}$ with $i_0 < j_0$ and $|C| = 3$, $v_3 \in N_C(y_{i_0}) \cap N_C(y_{j_0})$. Then $H_2[y_0, y_{j_0}], v_3, y_0$ is the other disjoint cycle.

Suppose that $d_C(x_1) = 3$. Since $d_C(y_{i_0}) \geq 2$ and $d_C(y_{j_0}) \geq 2$ for some $i_0, j_0 \in \{1, i, t\}$ with $i_0 < j_0$ and $|C| = 3$, $v_{m_0} \in N_C(y_{i_0}) \cap N_C(y_{j_0})$ for some $1 \leq m_0 \leq 3$. Without loss of generality, we may assume that $m_0 = 1$. Then $H_2[y_0, y_{j_0}], v_1, y_0$ and x_1, v_3, v_2, x_1 are two disjoint cycles.

Case 2. The sequence is $(3, 3, 1, 1)$.

Suppose that $d_C(x_1) = 1$. Then $d_C(y_{i_0}) = 3$ for some $i_0 \in \{1, i, t\}$, and we may assume that $i_0 = 1$, that is, $d_C(y_1) = 3$. Since one of y_i and y_t has degree 3 to C and the other one of them has degree 1 to C, noting that $|C| = 3$, $v_{m_0} \in N_C(y_i) \cap N_C(y_t)$ for some $1 \leq m_0 \leq 3$. Without loss of generality, we may assume that $m_0 = 1$. Then $H_2[y_1, y_t], v_1, y_1$ and v_1, v_3, v_2, y_1 are two disjoint cycles.

Suppose that $d_C(x_1) = 3$. Since one of y_1, y_i, y_t has degree 3 to C and the others of them have degree 1 to C, $d_C(y_{i_0}) = 3$ and $d_C(y_{j_0}) = 1$ for some distinct $i_0, j_0 \in \{1, i, t\}$. Then note that either $i_0 < j_0$ or $i_0 > j_0$. Since $|C| = 3$, $v_{m_0} \in N_C(y_{i_0}) \cap N_C(y_{j_0})$ for some $1 \leq m_0 \leq 3$. Without loss of generality, we may assume that $m_0 = 1$. Then $H_2[y_0, y_{j_0}], v_1, y_0$ and v_1, v_3, v_2, x_1 are two disjoint cycles. □

Acknowledgments

The authors would like to thank the referees for valuable suggestions and comments. The first author’s research was supported by the Heilbrun Distinguished Emeritus Fellowship.

References