Generalized Degree Conditions for Graphs with Bounded Independence Number

Ralph Faudree
UNIVERSITY OF MEMPHIS
MEMPHIS, TENNESSEE

Ronald J. Gould
EMORY UNIVERSITY
ATLANTA, GEORGIA

Linda Lesniak
DREW UNIVERSITY
MADISON, NEW JERSEY

Terri Lindquester
RHODES COLLEGE
MEMPHIS, TENNESSEE

ABSTRACT

We consider a generalized degree condition based on the cardinality of the neighborhood union of arbitrary sets of r vertices. We show that a Dirac-type bound on this degree in conjunction with a bound on the independence number of a graph is sufficient to imply certain hamiltonian properties in graphs. For $K_{1,m}$-free graphs we obtain generalizations of known results. In particular we show:

Theorem. Let $r \geq 1$ and $m \geq 3$ be integers. Then for each non-negative function $f(r, m)$ there exists a constant $C = C(r, m, f(r, m))$ such that if G is a graph of order n ($n \geq r, n > m$) with $\delta_i(G) \geq (n/3) + C$ and $\beta(G) \leq f(r, m)$, then

(a) G is traceable if $\delta(G) \geq r$ and G is connected;
(b) G is hamiltonian if $\delta(G) \geq r + 1$ and G is 2-connected;
(c) G is hamiltonian-connected if $\delta(G) \geq r + 2$ and G is 3-connected.

© 1995 John Wiley & Sons, Inc.
Dirac [2] proved that if G is a graph of order $n \geq 3$ with $\delta(G) \geq n/2$, then G is hamiltonian. In [5], Matthews and Sumner lowered the minimum degree condition for hamiltonicity by imposing the condition that G be clawfree (i.e., G contains no induced subgraph isomorphic to $K_{1,3}$).

Theorem A [5]. If G is a 2-connected $K_{1,3}$-free graph of order $n \geq 3$ with $\delta(G) \geq (n - 2)/3$, then G is hamiltonian.

Recently, Markus [4] obtained similar results for $K_{1,m}$-free graphs, $m \geq 3$.

Theorem B [4]. If G is a 2-connected $K_{1,m}$-free graph of order $n \geq 3$ with $\delta(G) \geq (n + m - 2)/3$, then G is hamiltonian.

Both of the previous theorems have analogs for traceable graphs and hamiltonian-connected graphs.

The idea of minimum degree can be generalized as follows. For a graph G of order n and $r \leq n$, define

$$\delta_r(G) = \min_{\{S \subseteq V(G) \mid |S| = r\}} \left| \bigcup_{u \in S} N(u) \right| .$$

Then, of course, $\delta(G) = \delta_1(G)$. In [3], the following results involving $\delta_2(G)$ were established.

Theorem C [3]. If G is connected $K_{1,3}$-free graph of order n such that $\delta_2(G) \geq (n + 1)/3$, then for n sufficiently large G is traceable.

Theorem D [3]. If G is a 2-connected $K_{1,3}$-free graph of order n such that $\delta_2(G) \geq (n + 1)/3$, then for n sufficiently large G is hamiltonian.

Theorem E [3]. If G is a 3-connected $K_{1,3}$-free graph of order n such that $\delta_2(G) \geq (n + 24)/3$, then for n sufficiently large G is hamiltonian-connected.

Here we will prove results that in some sense incorporate and generalize Theorems A–E. Undefined terms and notations can be found in [1]. We begin with Theorem 1, which establishes sufficient conditions for traceability, hamiltonicity, and hamiltonian-connectedness based on $\delta_r(G)$ and the independence number $\beta(G)$ of a graph G.

Theorem 1. Let $r \geq 1$ and $m \geq 3$ be integers. Then for each non-negative function $f(r,m)$ there exists a constant $C = C(r,m,f(r,m))$ such that if G is a graph of order n ($n \geq r, n > m$) with $\delta_r(G) \geq (n/3) + C$ and $\beta(G) \leq f(r,m)$ then

1. G is traceable if $\delta(G) \geq r$ and G is connected;
(b) G is hamiltonian if $\delta(G) \geq r + 1$ and G is 2-connected;
(c) G is hamiltonian-connected if $\delta(G) \geq r + 2$ and G is 3-connected.

Proof. We proceed by induction on n and assume that (a), (b), and (c) have been established for all graphs of order less than n. (The proof is anchored by selecting C large.) Let G be a graph of order n such that $\delta_r(G) \geq (n/3) + C$ and $\beta(G) \leq f(r, m)$. Assume that G satisfies the hypotheses of (a), (b), or (c). We first show that

(i) if G satisfies the hypotheses of (a), then G has a path of order at least $(2n/3) - (2r/3)$;
(ii) if G satisfies the hypotheses of (b), then G has a cycle of order at least $(2n/3) - (2r/3)$;
(iii) if G satisfies the hypotheses of (c), then G has a $u - v$ path of order at least $(2n/3) - (2r/3)$ for each pair $u, v \in V(G)$.

Let X denote a longest path of G, longest cycle of G, or longest $u - v$ path of G depending on whether we are in (i), (ii), or (iii). We first show that $|V(X)| \geq n/6r$. Since $\delta_r(G) \geq (n/3) + C$, for C sufficiently large every vertex of G with at most $r - 1$ exceptions has degree at least $(n/3) + r - 1$. Let S be the set of vertices of degree less than $(n/3r) + r - 1$ and let $H = \langle V(G) - S \rangle$. Then every vertex of H has degree at least $n/3r$ (in H). Let P be a longest path in H, with initial vertex w. Then every adjacency of w in H is on P so that one of these adjacencies together with a segment of P forms a cycle C in H with at least $n/3r$ vertices. This cycle (or path) is also in G. It is straightforward to use this cycle to show that in the hamiltonian-connected case, any two vertices u and v can be joined by a path using at least half the vertices of the cycle.

Thus, in all cases, $|V(X)| \geq n/6r$.

Next, if L denotes the vertices of G not on X of degree less than C/r, then $|L| \leq r - 1$. Thus, if $V(G) = V(X) \cup L$, then $|V(X)| \geq n - r + 1 \geq (2n/3) - (2r/3)$. Assume, then, that $V(G) \neq V(X) \cup L$.

We wish to show that the removal of l vertices from $G - V(X) - L$, $0 \leq l \leq 2$, results in at most two components, and each such component H satisfies

$$|V(H)| \geq \frac{n}{3} + C - f(r, m) - r - 2 \quad (1)$$
$$\delta(H) \geq r + 2 \quad (2)$$
$$\delta_r(H) \geq \frac{|V(H)|}{3} + C. \quad (3)$$

To do so, let H be such a component and $w \in V(H)$. Then $deg_G w \geq C/r$. Suppose G satisfies the hypotheses of (a) and let $X: v_1, v_2, \ldots, v_k$. If w is adjacent to v_i and v_j, $1 \leq i < j < k$, then $v_{i+1}v_{j+1} \notin E(G)$; otherwise,
the path

\[X': v_1, v_2, \ldots, v_i, w, v_j, v_{j-1}, \ldots, v_{i+1}, v_{j+1}, \ldots, v_k \]

has order greater than \(X \). Thus, since \(\beta(G) \leq f(r, m) \) we have that \(\deg_X w \leq \beta(G) + 1 \leq f(r, m) + 1 \) (where the extra 1 is only needed in the hamiltonian-connected case). Similarly, if \(G \) satisfies the hypotheses of (b) or (c), then \(\deg_X w \leq f(r, m) + 1 \). Thus,

\[
\deg_H w \geq \frac{C}{r} - f(r, m) - 1 - (r - 1) - l \geq r + 2
\]

for \(C \) sufficiently large. Thus, \(\delta(H) \geq r + 2 \). Let \(S \) be a set of \(r \) vertices of \(H \). Then

\[
|N_G(S)| \geq \frac{n}{3} + C .
\]

However, since \(H \) is connected and \(\beta(G) \leq f(r, m) \) we have that \(|N_X(S)| \leq f(r, m) + 1 \). Thus

\[
|N_H(S)| \geq \frac{n}{3} + C - f(r, m) - 1 - (r - 1) - l
\]

\[
\geq \frac{n}{3} + C - f(r, m) - r - 2 .
\]

Thus, \(|V(H)| \geq (n/3) + C - f(r, m) - r - 2 > n/3 \) for \(C \) sufficiently large, so the removal of \(l \) vertices from \(G - V(X) - L \) results in at most two components. Since \(\delta_r(H) \geq (n/3) + C \), it follows that \(n \geq C \). Thus, by choosing \(C \) at least \(18rf(r, m) + 18r^2 + 36r \), we have that

\[
\frac{n}{18r} \geq f(r, m) + r + 2
\]

so that

\[
\frac{n}{3} + C - f(r, m) - r - 2 \geq \frac{n}{3} - \frac{n}{18r} + C \geq \frac{|V(H)|}{3} + C .
\]

Since each component \(H \) of \(G - V(X) - L \) satisfies (1), (2), and (3) and has independence number at most \(f(r, m) \), it follows by induction that each such component is traceable. Furthermore, any 2-connected component is hamiltonian and any 3-connected component is hamiltonian-connected. Also, if \(|V(X)| > (n/3) - 2(C - f(r, m) - r - 2) \), then \(G - V(X) - L \) consists of one component, which is necessarily 3-connected.
Assume now that \(G \) satisfies the hypotheses of (a). We wish to show that
\[|V(X)| \geq (2n/3) - (2r/3). \]
Since each component \(H \) of \(G - V(X) - L \) is traceable and \(X \) is a longest path, we conclude that
\[
|V(X)| \geq |V(H)| \geq \frac{n}{3} + C - f(r, m) - r - 2
\]
\[
> \frac{n}{3} - 2(C - f(r, m) - r - 2)
\]
for \(C \) sufficiently large. Thus, \(G - V(X) - L \) is hamiltonian-connected.

Let \(X: v_1, v_2, \ldots, v_k \). Since \(G \) is connected there is a path from \(V(G) - V(X) - L \) to some vertex \(v_i \) on \(X \). Let \(P_1 \) be a shortest such path and let \(w \) be the vertex of \(G - V(X) - L \) on \(P_1 \). Let \(z \) be any other vertex of \(G - V(X) - L \) and let \(P_2 \) be any hamiltonian \(z - w \) path in \(G - V(X) - L \). Finally, let \(P_3 \) denote the longer of the subpaths \(v_1, v_2, \ldots, v_i \) and \(v_i, v_{i+1}, \ldots, v_k \) of \(X \). Then

\[
P_2, P_1, P_3
\]
is a path of \(G \) of order at least
\[
n - |V(X)| - (r - 1) + \frac{|V(X)|}{2}
\]
Since, by assumption, \(X \) is a longest path in \(G \), it follows that
\[
|V(X)| \geq n - |V(X)| - (r - 1) + \frac{|V(X)|}{2}
\]
and so \(|V(X)| \geq (2n/3) - (2r/3) \).

Assume next that \(G \) satisfies the hypotheses of (b). If \(G - V(X) - L \) is 2-connected, then \(G - V(X) - L \) is hamiltonian. If \(\kappa(G - V(X) - L) \leq 1 \), then the removal of 0 or 1 vertices results in two 2-connected components, each of order at least \((n/3) + C - f(r, m) - r - 2\). In either case, we obtain a hamiltonian subgraph of \(G \) of order at least \((n/3) + C - f(r, m) - r - 2\). Since \(X \) is a longest cycle of \(G \), we conclude that \(|V(X)| \geq (n/3) + C - f(r, m) - r - 2 \). Thus, \(G - V(X) - L \) is hamiltonian-connected for \(C \) sufficiently large.

Let \(X: v_1, v_2, \ldots, v_k, v_1 \). Since \(G \) is 2-connected, there are two vertex-disjoint paths, the first from \(V(G) - V(X) - L \) to \(V(X) \) and the second from \(V(X) \) to \(V(G) - V(X) - L \). Let \(P_1, P_2 \) be a shortest pair of such paths. Assume, without loss of generality, that \(P_1 \) intersects \(V(X) \) at \(v_i \) and \(P_2 \) intersects \(V(X) \) at \(v_j \), with \(i < j \). Let \(w \) be the initial vertex of \(P_1 \) and let \(z \) be the final vertex of \(P_2 \). Let \(P_3 \) be any hamiltonian \(z - w \) path of \(G - V(X) - L \), and finally, let \(P_4 \) denote the longer of the subpaths \(v_i, v_{i+1}, \ldots, v_j \) and \(v_i, v_{i-1}, \ldots, v_j \) of \(X \). Then

\[
P_1, P_4, P_2, P_3
\]
is a cycle of G of order at least

$$n - |V(X)| - (r - 1) + \frac{|V(X)|}{2}.$$

Since, by assumption, X is a longest cycle in G, it follows that

$$|V(X)| \geq n - |V(X)| - (r - 1) + \frac{|V(X)|}{2}.$$

and so $|V(X)| \geq (2n/3) - (2r/3)$.

Next, assume that G satisfies the hypotheses of (c). In this case, G also satisfies the hypotheses of (b). Thus, a longest cycle of G has order at least $(2n/3) - (2r/3)$. This implies that

$$|V(X)| \geq \frac{n}{3} - \frac{r}{3} > \frac{n}{3} - 2(C - f(r, m) - r - 2)$$

for C sufficiently large, and so $G - V(X) - L$ is hamiltonian-connected. Since G is 3-connected, there are three vertex-disjoint paths from $V(G) - V(X) - L$ to $V(X)$. Using two of these paths, a hamiltonian path in $G - V(X) - L$, and all but an appropriate segment of X we conclude that $|V(X)| \geq (2n/3) - (2r/3)$.

Thus, we have established that if G satisfies the hypotheses of (a), (b), or (c), then G has a path, cycle or $u - v$ path, respectively, of order at least $(2n/3) - (2r/3)$. If G satisfies the hypotheses of (a), let α denote the maximum number of vertices of degree less than C/r on a path of order at least $(2n/3) - (2r/3)$, and let Y be a longest path containing α vertices of degree less than C/r. Define α similarly if G satisfies the hypotheses of (b) or (c) and obtain either a longest cycle Y or a longest $u - v$ path Y containing α vertices of degree less than C/r.

If $G - V(Y)$ has a vertex w such that $\deg_G w \geq C/r$, then in a manner analogous to earlier arguments, we can show that $G - V(Y)$ has a component H with $|V(H)| \geq (n/3) + C - f(r, m) - 1$ that, for C sufficiently large, contradicts the fact that $|V(Y)| \geq (2n/3) - (2r/3)$. Thus, every vertex of G of degree at least C/r lies on Y. We complete the proof by showing that every vertex of G of degree less than C/r also lies on Y. Assume, to the contrary, that there are $\gamma > 0$ vertices of degree less than C/r that do not lie on Y. Since the number of vertices of G of degree less than C/r is at most $r - 1$, we have $\alpha + \gamma \leq r - 1$ and $r \geq 2$.

Assume first that G satisfies the hypotheses of (a). Let $Y: v_1, v_2, \ldots, v_k$ and let $w \in V(G) - V(Y)$. Since $\delta(G) \geq r$, we have $\deg_G w \geq r$. Thus, $\deg_Y w \geq r - (\gamma - 1) = (r - 1) - \gamma + 2 \geq \alpha + 2$. Furthermore, by the definition of α, neither v_1 nor v_k is adjacent to w. Let $v_{i_1}, v_{i_2}, \ldots, v_{i_{\alpha+2}}$ be $\alpha + 2$ adjacencies of w on Y, $i_1 \leq i_2 \leq \ldots \leq i_{\alpha+2}$.
Let $I_0 = \{v_1, v_2, \ldots, v_{i-1}\}$, let $I_{\alpha+2} = \{v_{i\alpha+2+1}, v_{i\alpha+2+2}, \ldots, v_k\}$ and for $j = 1, 2, \ldots, \alpha + 1$ let

$$I_j = \{v_{i_j+1}, v_{i_j+2}, \ldots, v_{i_j+1}\}.$$

Since Y contains exactly α vertices of degree less than C/r, it follows that three of the sets $I_0, I_1, \ldots, I_{\alpha+2}$ contain no vertices of degree less than C/r. Let I_s be the smallest such set. If $1 \leq s \leq \alpha + 1$, let

$$P: v_1, v_2, \ldots, v_s, w, v_{i_s+1}, v_{i_s+1+1}, \ldots, v_k.$$

If $s = 0$, let

$$P: v_{i_1-1}, v_{i_2-2}, \ldots, v_1, w, v_{i_2}, v_{i_2+1}, \ldots, v_k.$$

If $s = \alpha + 2$, let

$$P: v_1, v_2, \ldots, v_{i_{\alpha+1}}, w, v_{i_{\alpha+2}}, v_{i_{\alpha+2}-1}, \ldots, v_{i_{\alpha+1}+1}.$$

Then P contains $\alpha + 1$ vertices of degree less than C/r. By the choice of α, then, this means that P has order less than $(2n/3) - (2r/3)$. However,

$$|V(P)| \geq n - \left[\left(\gamma - 1 \right) + \frac{n - (\gamma - 1) - (\alpha + 2)}{3} \right]$$

$$= n - \left(\frac{n + 2\gamma - \alpha - 4}{3} \right)$$

$$\geq n - \left(\frac{n + 2\gamma - 4}{3} \right)$$

$$\geq n - \left(\frac{n + 2(r - 1) - 4}{3} \right)$$

$$= n - \left(\frac{n + 2r - 6}{3} \right) = \frac{2n}{3} - \frac{2r}{3} + 2,$$

which gives a contradiction. Thus, Y contains every vertex of degree less than C/r, which completes the proof in the case that G satisfies the hypotheses of (a).

If G satisfies the hypotheses of (b) or (c), the proof is completed in an analogous manner. In these cases, we have $\delta(G) \geq r + 1$ or $\delta(G) \geq r + 2$, respectively, so that every vertex $w \in V(G) - V(Y)$ has $\deg_x w \geq \alpha + 3$ or $\deg_x w \geq \alpha + 4$. In either case, we are able to contradict the choice of α. This completes the proof of Theorem 1. \[\square\]

An immediate corollary of Theorem 1 provides the result that in some sense generalizes Theorems A–E.
Corollary. Let \(r \geq 1 \) and \(m \geq 3 \) be integers. Then there exists a constant \(C = C(r, m) \) such that if \(G \) is a \(K_{1,m} \)-free graph of order \(n (n \geq r, n > m) \) with \(\delta_r(G) \geq (n/3) + C \), then

(a) \(G \) is traceable if \(\delta(G) \geq r \) and \(G \) is connected;
(b) \(G \) is hamiltonian if \(\delta(G) \geq r + 1 \) and \(G \) is 2-connected;
(c) \(G \) is hamiltonian-connected if \(\delta(G) \geq r + 2 \) and \(G \) is 3-connected.

Proof. It suffices to show that if \(G \) is a \(K_{1,m} \)-free graph of order \(n \) and \(\delta_r(G) > n/3 \), then \(\beta(G) \leq 3(m - 1)r \). Let \(t = \beta(G) \). If \(t < r \) then we are done. Otherwise, let \(T \) be a set of \(t \) independent vertices of \(G \) and let \(S = V(G) - T \). Since \(G \) is \(K_{1,m} \)-free, each vertex of \(S \) is adjacent to at most \(m - 1 \) vertices of \(T \). Thus, the number of edges from \(S \) to \(T \) is at most \((m - 1)(n - i) \). However, if \(T' \) is a set of \(r \) vertices of \(T \), then \(|N_G(T')| > n/3 \). Thus, the number of edges from \(T' \) to \(S \) is greater than \(n/3 \). It follows that the number of edges from \(T \) to \(S \) is greater than

\[
\frac{\binom{t}{r}\left(\frac{n}{3}\right)}{\binom{t-1}{r-1}}.
\]

Thus, \((m - 1)(n - t) > \binom{t}{r}(n/3)/(\binom{t-1}{r-1}) \). This however, implies that \(t \leq 3(m - 1)r \), which completes the proof of the corollary.

Since Theorems A–D are best possible with respect to the bounds on \(\delta_1(G) \) and \(\delta_2(G) \), the bound given on \(\delta_r(G) \) in the corollary is of the correct order of magnitude. The graph \(G \) of Figure 1 indicates that a minimum degree condition of at least \(r - 1 \) is required in (a). The connected \(K_{1,m} \)-free graph \(G \) satisfies \(\delta_r(G) \geq (n - r + 1)/2 \) and \(\delta(G) = r - 2 \). However, \(G \) is not traceable.

The graph \(G \) of Figure 2 indicates that a minimum degree condition of at least \(r - 1 \) is also required in (b) for \(r \geq 4 \). The 2-connected \(K_{1,m} \)-free
graph G satisfies $\delta_r(G) \geq (n - r + 1)/2$ and $\delta(G) = r - 2$. However, G is not hamiltonian.

In our next result we restrict ourselves to lower bounds on $\delta_3(G)$ in $K_{1,3}$-free graphs. Here we can lower the minimum degree conditions for traceable, hamiltonian and hamiltonian-connected from $r = 3$, $r + 1 = 4$ and $r + 2 = 5$ to 2, 3, and 4 respectively. We observe that in this case, the property of being $K_{1,3}$-free is used heavily throughout the proof. Furthermore, the constant C in the statement of Theorem 2 must be chosen so that n is sufficiently large for Theorem E to be applicable.

Theorem 2. There exists a constant C such that if G is a $K_{1,3}$-free graph of order n with $\delta_3(G) \geq (n/3) + C$, then

(a) G is traceable if $\delta(G) \geq 2$ and G is connected;
(b) G is hamiltonian if $\delta(G) \geq 3$ and G is 2-connected;
(c) G is hamiltonian-connected if $\delta(G) \geq 4$ and G is 3-connected.

Proof. We proceed by induction on n and assume that (a), (b), and (c) have been established for all graphs of order less than n. Let G be a $K_{1,3}$-free graph of order n such that $\delta_3(G) \geq (n/3) + C$, and assume that G satisfies the hypotheses of (a), (b), or (c). Since G is $K_{1,3}$-free, $\beta(G) \leq 18$.

In a manner analogous to the proof of Theorem 1, we can show that G has a path, cycle, or $u - v$ path of order at least $(2n/3) - 2$, depending on whether G satisfies the hypotheses of (a), (b), or (c). This, however, implies that G has a path, cycle, or $u - v$ path X that contains all vertices of G of degree at least $C/3$. Thus, $|V(X)| \geq n - 2$. To complete the proof, we show that G has a path, cycle or $u - v$ path Y of order at least $(2n/3) - 2$ that contains all vertices of G of degree less than $C/3$.

Suppose, first, that G has exactly one vertex y of degree less than $C/3$. If y is on X, then let $Y = X$. If y is not on X, then since $\text{deg}_G y$ is at least 2, 3, or 4 depending on whether G satisfies the hypotheses of (a), (b), or (c), we can delete an appropriate segment of X and add y together with two adjacent edges to obtain the required Y. Thus, we assume that G has two vertices x and y of degree less than $C/3$. If both x and y are on X, let $Y = X$. Suppose, then, that at least one of x and y are not on X.
I. Assume that G satisfies the hypotheses of (c).

Case 1. Suppose $xy \not\in E(G)$ and that exactly one of x and y, say x, is on X. If $\deg_G y > 4$, then we can delete an appropriate segment of X and add y to obtain the required $u - v$ path Y. Thus, we may assume that $\deg_G y = 4$. Let $X: u = x_1, x_2, \ldots, x_{n-1} = v$ and suppose $N_G(y) = \{x_i, x_j, x_k, x_l\}$, where $i < j < k < l$. Let $x = x_i$. We may assume $i < t < l$; otherwise, we can easily obtain the desired Y. Then (by symmetry) either $j < t < k$ or $k < t < 1$.

Subcase (i). Suppose $j < t < k$. Then $j \geq i + \lceil n/3 \rceil + 4$; otherwise, let

$$Y: u = x_1, x_2, \ldots, x_i, y, x_j, x_{j+1}, \ldots, x_{n-1} = v.$$

Similarly, $l \geq k + \lceil n/3 \rceil + 4$. Furthermore, since G is $K_{1,3}$-free and $\deg_G y = 4$, it follows that $x_{j-1}x_{j+1} \in E(G)$. Consider the vertex x_j. Since $\delta_3(G) \geq (n/3) + C$, we have that $|N_G(x, y, x_j)| \geq (n/3) + C$. Since $\deg_G x$ and $\deg_G y$ are less than $C/3$, it follows that $\deg_G x_j > n/3$. Thus $x_jx_p \in E(G)$ for some p with $i + 1 \leq p \leq i + \lceil n/3 \rceil$ or $k - \lceil n/3 \rceil \leq p \leq k - 1$. Thus we have either

$$Y: u = x_1, x_2, \ldots, x_i, y, x_j, x_p, x_{p+1}, \ldots, x_{j-1}, x_{j+1}, x_{j+2}, \ldots, x_{n-1} = v$$

or

$$Y: u = x_1, x_2, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p, x_j, y, x_lx_{l+1}, \ldots, x_{n-1} = v.$$

Subcase (ii). Suppose $k < t < l$. Then, necessarily, $j \geq i + \lceil n/3 \rceil + 4$ and $k \geq j + \lceil n/3 \rceil + 4$. Furthermore, since G is $K_{1,3}$-free, $x_{j-1}x_{j+1} \in E(G)$. As in the previous case, $\deg_G x_j > n/3$. Thus, $x_jx_p \in E(G)$ for some p with $i + 1 \leq p \leq i + \lceil n/3 \rceil$ or $k - \lceil n/3 \rceil \leq p \leq k - 1$. Thus we have either

$$Y: u = x_1, x_2, \ldots, x_i, y, x_j, x_p, x_{p+1}, \ldots, x_{j-1}, x_{j+1}, x_{j+2}, \ldots, x_{n-1} = v$$

or

$$Y: u = x_1, x_2, \ldots, x_{j-1}, x_{j+1}, x_{j+2}, \ldots, x_p, x_j, y, x_k, x_{k+1} \ldots, x_{n-1} = v.$$

Case 2. Suppose $xy \not\in E(G)$ and that neither x nor y is on X. Since $\deg_G x \geq 4$, we obtain a $u - v$ path X' of order at least $(2n/3) - 2$ that contains x. If we choose a longest such path X' then X' contains all vertices of degree at least $C/3$. If x and y are on X', let $Y = X'$ and if only x is on X' we may proceed as in Case 1.
Case 3. Suppose \(xy \in E(G) \) and one of \(x \) and \(y \), say \(x \) is on \(X \). Since \(xy \in E(G) \) and \(\deg_G y \geq 4 \), we can clearly add \(y \) and delete an appropriate segment of \(X \) to obtain the required \(u - v \) path \(Y \).

Case 4. Suppose \(xy \in E(G) \), neither \(x \) nor \(y \) is on \(X \) and \(|N_X(\{x, y\})| \geq 4 \). We then obtain a \(u - v \) path \(X' \) of order at least \((2n/3) - 2\) that contains one or both of \(x \) and \(y \). A longest such path \(X' \) contains all vertices of degree at least \(C/3 \). If \(x \) and \(y \) are on \(X' \), let \(Y = X' \); otherwise, we may proceed as in Case 3.

Case 5. Suppose \(xy \in E(G) \), neither \(x \) nor \(y \) is on \(X \) and \(|N_X(\{x, y\})| = 3 \). Let

\[
X: \ u = x_1, x_2, \ldots, x_{n-2} = v
\]

and suppose \(N_X(\{x, y\}) = \{x_i, x_j, x_k\} \) where \(i < j < k \). We may assume that \(j \geq i + \lceil n/3 \rceil + 4 \) and \(k \geq j + \lceil n/3 \rceil + 4 \) since otherwise we can easily obtain the desired \(u - v \) path \(Y \). As in Case 1, \(x_{j-1}x_{j+1} \in E(G) \) and \(\deg_G x_j > n/3 \). Thus, \(x_jx_p \in E(G) \) for some \(p \) with \(i + 1 \leq p \leq i + \lceil n/3 \rceil \) or \(k - \lceil n/3 \rceil \leq p \leq k - 1 \). Thus, we have either

\[
Y: \ u = x_1, x_2, \ldots, x_j, x_{j+1}, x_{j+2}, \ldots, x_{n-2} = v
\]
or

\[
Y: \ u = x_1, x_2, \ldots, x_{j-1}, x_{j+1}, x_{j+2}, \ldots, x_p, x_j, x, y, x_kx_{k+1}, \ldots, x_{n-2} = v
\]

II. Assume that \(G \) satisfies the hypotheses of (b).

Case 1. Suppose \(xy \notin E(G) \) and that exactly one of \(x \) and \(y \), say \(x \), is on \(X \). If \(\deg_G y > 3 \), then we can delete an appropriate segment of \(X \) and add \(y \) to obtain the required cycle \(X \). Thus, we may assume that \(\deg_G y = 3 \).

Let \(X = x_1, x_2, \ldots, x_{n-1}, x_t \) and suppose \(N_G(y) = \{x_i, x_j, x_k\} \), where \(i < j < k \). Without loss of generality, we may assume that \(x = x_t \), where \(k < t \leq n - 1 \). As in previous cases, we may assume that \(j \geq i + \lceil n/3 \rceil + 4 \), \(k \geq j + \lceil n/3 \rceil + 4 \), \(x_{j-1}x_{j+1} \in E(G) \), and \(\deg_G x_j > n/3 \). Thus \(x_jx_p \in E(G) \) for some \(p \) with \(i + 1 \leq p \leq i + \lceil n/3 \rceil \) or \(k - \lceil n/3 \rceil \leq p \leq k - 1 \). In either case, we obtain the desired cycle \(Y \).

Case 2. Suppose \(xy \notin E(G) \) and that neither \(x \) nor \(y \) is on \(X \). Since \(\deg_G x \geq 3 \), we may proceed as in I, Case 2.

Case 3. Suppose \(xy \in E(G) \) and that exactly one of \(x \) and \(y \) is on \(X \), say \(x \). Since \(xy \in E(G) \) and \(\deg_G x \geq 3 \), we may proceed as in I, Case 3.
Case 4. Suppose \(xy \in E(G) \), neither \(x \) nor \(y \) is on \(X \) and \(|N_X(\{x, y\})| \geq 3 \). Here we may proceed as in I, Case 4.

Case 5. Suppose \(xy \in E(G) \), neither \(x \) nor \(y \) is on \(X \) and \(|N_X(\{x, y\})| = 2 \). Let

\[
X; \ x_1, x_2, \ldots, x_{n-2}, x_1
\]

and assume, without loss of generality, that \(N_X(\{x, y\}) = \{x_1, x_j\} \), where \(j < n - 2 \). We may also assume \(j \geq \lfloor n/3 \rfloor + 5 \) and \(n - 2 \geq j + \lfloor n/3 \rfloor + 3 \); otherwise we easily obtain the desired cycle \(Y \). As in previous cases, \(x_{j-1}, x_{j+1} \in E(G) \) and \(\deg_G x_j > n/3 \). Thus, \(x_jx_p \in E(G) \) for some \(p \) with \(2 \leq p \leq \lfloor n/3 \rfloor + 1 \) or \(n - \lfloor n/3 \rfloor - 1 \leq p \leq n - 2 \). In either case, we obtain the desired cycle \(Y \).

III. Assume that \(G \) satisfies the hypotheses of (a).

Cases 1–4 follow exactly as they did in I and II. We list them without proof.

Case 1. Suppose \(xy \notin E(G) \) and exactly one of \(x \) and \(y \), say \(x \), is on \(X \).

Case 2. Suppose \(xy \notin E(G) \) and that neither \(x \) nor \(y \) is on \(X \).

Case 3. Suppose \(xy \in E(G) \) and exactly one of \(x \) and \(y \) is on \(X \).

Case 4. Suppose \(xy \in E(G) \), neither \(x \) nor \(y \) is on \(X \), and \(|N_X(\{x, y\})| \geq 2 \).

Case 5. Suppose \(xy \in E(G) \), neither \(x \) nor \(y \) is on \(X \), and \(|N_X(\{x, y\})| = 1 \). Consider the connected graph \(G' = G - \{x, y\} \). Since each of \(x \) and \(y \) has degree 2 in \(G \) it follows that \(\delta(G') > n/3 \). If \(G' \) is 2-connected then, by the Matthews-Sumner result \(G' \) is hamiltonian and we obtain a hamiltonian path \(Y \) in \(G \). If \(G' \) has a cutvertex \(w \), consider \(G' - w \). Then, since \(\delta(G' - w) > n/3 \) and, consequently, \(\delta_2(G' - w) > n/3 \), it follows that \(G' - w \) has exactly two components, both of which are 3-connected and hence hamiltonian-connected by Theorem E. But then since \(G \) is \(K_{1,3} \)-free, \(G \) has a hamiltonian path \(Y \) and the proof is complete.

The graph \(G \) of Figure 1, with \(r = 3 \), indicates that for the traceable case, \(\delta(G) \geq 2 \) is a necessary condition.
ACKNOWLEDGMENT

RF and RJG were supported by O.N.R. grant N00014-91-J-1085. LL was supported by O.N.R. grant N00014-93-1-0050. TL was supported by Pew Midstates Science and Mathematics Consortium Faculty Development Program.

References

Received September 3, 1992