SPANNING CATERPILLARS WITH BOUNDED DIAMETER

RALPH FAUDREE\(^1\)
Memphis State University
Memphis, TN 38152, U.S.A.

RONALD GOLDS\(^2\)
Emory University
Atlanta, GA 30322, U.S.A.

MICHAEL JACOBSON\(^3\)
University of Louisville
Louisville, KY 40292, U.S.A.

and

LINDA LESNIAK\(^4\)
Drew University
Madison, NJ 07940, U.S.A.

Abstract

A caterpillar is a tree with the property that the vertices of degree at least 2 induce a path. We show that for every graph \(G \) of order \(n \), either \(G \) or \(\overline{G} \) has a spanning caterpillar of diameter at most \(2 \log n \). Furthermore, we show that if \(G \) is a graph of diameter 2 (diameter 3), then \(G \) contains a spanning caterpillar of diameter at most \(cn^{3/4} \) (at most \(n \)).

Keywords: distance, spanning tree.

1991 Mathematics Subject Classification: 05C05, 05C12.

\(^{1}\)Supported by O.N.R. grant N00014-91-J-1085
\(^{2}\)Supported by O.N.R. grant N00014-91-J-1085
\(^{3}\)Supported by O.N.R. grant N00014-91-J-1098
\(^{4}\)Supported by O.N.R. grant N00014-93-1-0050
1. Introduction

It is easy to show that for every graph G, either G or the complement \bar{G} is connected. Consequently, if T_n denotes the family of all trees of order n, then for every graph G of order n, either G or \bar{G} contains a member of T_n (as a spanning subgraph). Such a family is called complete, that is, a family \mathcal{F}_n of graphs of order n is complete if for every graph G of order n, either G or \bar{G} contains a member of \mathcal{F}_n. Thus, T_n is complete and it is easy to show that the subfamily $T_n(4)$ of trees of order n and diameter at most 4 is also complete. In Section 2, we will discuss other complete families of trees and show, in particular, that $C_n(2\log n)$ is complete, where $C_n(2\log n)$ is the family of caterpillars of order n and diameter at most $2\log n$. In Section 3 we will investigate graphs of order n and diameter at most 3 and show that if G has diameter 2 (diameter 3), then G contains a spanning caterpillar of diameter at most $cn^{3/4}$ (at most n).

2. Complete Families of Trees

We begin this section by proving a theorem from graph theory folklore. For vertices x and y of a graph G, $d_G(x, y)$ will denote the distance between x and y in G, i.e., the number of edges in a shortest path from x to y. The diameter of G, denoted $diam(G)$, is the largest distance between pairs of vertices of G.

Theorem 1. Let $T_n(4)$ denote the family of trees of order n and diameter at most 4. Then $T_n(4)$ is complete.

Proof. Without loss of generality, we may assume $n \geq 5$. Let G be a graph of order n. If $diam(G) \leq 2$, then clearly G contains a spanning tree with diameter at most 4. Thus we may assume that either G is disconnected or G has diameter at least 3. In either case, G contains nonadjacent vertices u and v which have no common neighbors. Therefore, in \bar{G}, u and v are adjacent and every other vertex is adjacent to at least one of u and v. Thus, \bar{G} contains a spanning tree of diameter at most 4.

Let G be the graph of order 5s obtained by replacing each vertex of a 5-cycle with a copy of the complete graph K_5 and adding edges between two vertices in different copies of K_5 if the corresponding vertices of the 5-cycle were adjacent. Then neither G nor \bar{G} contains a spanning tree of diameter at most 3. Thus, with respect to diameter, Theorem 1 cannot be improved.
Recently, Bialostocki, Dierker and Voxman [1] investigated other complete families of trees. Moreover, they conjectured that the family B_n of brooms of order n is complete, where a broom (of order n) is a tree consisting of a star and a path, with one end of the path identified with the central vertex of the star. The brooms of order 6 are shown in Figure 1.

In [2], Burr settled their conjecture in the affirmative and suggested that, in fact, only about half of B_n is needed for a complete family. We note that any complete subfamily of B_n necessarily contains the broom of diameter $n-1$, i.e. the path of order n.

![Figure 1](image_url)

One property of brooms is that all non-endvertices lie along a single path. In the remainder of this paper we will focus primarily on complete families of trees with this property having small diameter.

A *caterpillar* is a tree with the property that the vertices of degree at least 2 induce a path. These vertices form the spine of the caterpillar. Note that if S is the spine of a caterpillar C of order at least 3, then $\text{diam}(C) = |S| + 1$. In Theorem 2, we will show that $C_n(2 \log n)$ is complete, where $C_n(2 \log n)$ is the family of caterpillars of order n and diameter at most $2 \log n$. (Here, $\log n$ is $\log_2 n$.) The following lemma will be useful.

Lemma 1. Let G be a graph of order n and diameter 2. If G contains a caterpillar C of diameter d, then G contains a spanning caterpillar with diameter at most $d + (|V(G)| - |V(C)|)$.
Proof. Let \(v_1, v_2, \ldots, v_{d-1} \) be the vertices in the spine of \(C \), where \(v_i v_{i+1} \in E(C), 1 \leq i \leq d - 2 \). We first construct a caterpillar \(C' \) such that (i) \(|V(C')| = |V(C)| + 1 \) and (ii) \(\text{diam}(C') \leq \text{diam}(C) + 1 \).

Without loss of generality we may assume that if \(x \) is an endvertex of \(C \) and \(x \) is adjacent to \(v_i \), then \(x \) is not adjacent to \(v_j \) for \(j < i \). For convenience, we will say that the end vertices have been "shifted left". Furthermore, we may assume that no vertex in the spine is adjacent to a vertex of \(V(G) - V(C) \) since in that case we immediately obtain \(C' \) with \(\text{diam}(C') = \text{diam}(C) \). Let \(y \in V(G) - V(C) \). Then, since \(d_G(y, v_1) = 2 \) it follows that there is a vertex \(x \) of \(C \) such that \(xv_1 \in E(C) \) and \(yx \in E(G) \). Thus we obtain \(C' \) with spine \(\{ x, v_1, v_2, \ldots, v_{d-1} \} \) and \(\text{diam}(C') = \text{diam}(C) + 1 \).

Clearly, by repeating this procedure we obtain the desired spanning caterpillar.

A set \(X \) of vertices in a graph \(G \) is a dominating set if every vertex of \(V(G) - X \) is adjacent to at least one vertex of \(X \). In [3] it was shown that for every graph \(G \) of order \(n \), either \(G \) or \(\bar{G} \) has a dominating set \(X \) with \(|X| \leq \log n \). This result will be used in the proof of Theorem 2.

Theorem 2. Let \(C_n(2\log n) \) denote the family of caterpillars of order \(n \) and diameter at most \(2\log n \). Then \(C_n(2\log n) \) is complete.

Proof. It is straightforward to verify the result for \(n \leq 4 \). Thus we assume \(n \geq 5 \). If \(G \) or \(\bar{G} \) is complete, then \(G \) or \(\bar{G} \) contains a spanning caterpillar of diameter \(2 \) (i.e., a spanning star), where \(2 \leq 2\log n \). Furthermore, if \(G \) or \(\bar{G} \) is disconnected or has diameter at least \(3 \) then, as in the proof of Theorem 1, either \(G \) or \(\bar{G} \) contains a spanning caterpillar of diameter at most \(3 \) and \(3 \leq 2\log n \). Thus we may assume that \(\text{diam}(G) = \text{diam}(\bar{G}) = 2 \).

Let \(uv \in E(G) \) and let \(A \) denote those vertices adjacent to neither \(u \) nor \(v \) in \(G \). Suppose \(|A| \leq 2\log n - 3 \). Then, in \(\bar{G} - A \), \(u \) and \(v \) are either in different components or at distance at least \(3 \). Consequently, as in the proof of Theorem 1, \(\bar{G} - A \) contains a spanning caterpillar of diameter at most \(3 \). Thus \(\bar{G} \) contains a caterpillar of diameter at most \(3 \) and it follows from Lemma 1 that \(\bar{G} \) contains a spanning caterpillar of diameter at most \(3 + |A| \leq 2\log n \). Thus we may assume that if \(uv \in E(G) \) then \(u \) and \(v \) have at least \(2\log n - 3 \) common neighbors in \(\bar{G} \). Similarly, if \(uv \notin E(G) \), then \(u \) and \(v \) have at least \(2\log n - 3 \) common neighbors in \(G \).

Let \(X \subseteq V(G) \) with \(|X| \leq \log n \) such that \(X \) is a dominating set in \(G \) or \(\bar{G} \). (The existence of such a set is guaranteed by the aforementioned
result in [3]). Assume, without loss of generality, that X dominates G and $X = \{v_1, v_2, \ldots, v_t\}$. We claim that there is a $v_1 - v_t$ path P containing the vertices of X in the order v_1, v_2, \ldots, v_t and such that between v_i and v_{i+1} there is at most one vertex. Suppose such a $v_1 - v_t$ path P has been constructed for $l < t$. If $v_l v_{l+1} \in E(G)$ then we may extend P to include v_{l+1}. If $v_l v_{l+1} \not\in E(G)$ then v_l and v_{l+1} have at least $2 \log n - 3 \geq 2l - 1$ common neighbors in G. Consequently there is a common neighbor $v \in V(G) - V(P) - X$ and P can be extended to include v_{l+1}. Thus G contains a $v_1 - v_t$ path of order at most $2t - 1$ containing X and this path forms the spine of a spanning caterpillar of diameter at most $2 \log n$.

In [3] it was shown that for fixed $\varepsilon > 0$ there exists $n_0 = n_0(\varepsilon)$ such that for each $n \geq n_0$ there is a graph G of order n such that no set of at most $(1 - \varepsilon) \log n$ vertices dominates either G or \overline{G}. Thus the bound in Theorem 2 on the diameter of the spanning caterpillars is, in fact, the correct order of magnitude.

In the proof of Theorem 2, we began with either a caterpillar of diameter at most 3 or a dominating set of cardinality at most $\log n$ and built a spanning caterpillar of diameter at most $2 \log n$. The same proof technique can be used to establish Theorem 3.

Theorem 3. If D_n denotes the family of trees of order n with diameter at most 6 and domination number at most $\log n$, then D_n is complete.

3. Spanning Trees of Small Diameter Graphs

If G is the graph of Figure 2, then G has diameter 4 and no spanning caterpillar. In this section we will show that every graph of diameter at most 3 has a spanning caterpillar.

![Figure 2](image)
Theorem 4. If G is a graph with diameter at most 3, then G contains a spanning caterpillar.

Proof. If $\text{diam}(G) = 1$ then G is complete and contains a spanning star. If $\text{diam}(G) = 2$ then Lemma 1 guarantees the existence of a spanning caterpillar. Thus we need only show that if G is a graph of diameter 3 then G has a spanning caterpillar. Assume, to the contrary, that G is an edge-maximal counterexample. Thus, by edge maximality, G contains two vertex disjoint caterpillars that together span G. Among all such pairs C_1, C_2 of disjoint caterpillars that together span G select a pair such that $|V(C_1)|$ is as large as possible. Let v_1, v_2, \ldots, v_l be the vertices (in order) of the spine of C_1 and $v_{l+1}, v_{l+2}, \ldots, v_m$ be the vertices of the spine of C_2. As in the proof of Lemma 1, assume that the endvertices of C_1 have been "shifted left". Let w be an endvertex of C_1 adjacent to v_l and let u be an endvertex of C_2 adjacent to v_{l+1}. If C_2 is trivial, let $u = v_{l+1}$. Clearly, $d_G(u, w) \neq 1$ since, by assumption, G has no spanning caterpillar. Thus, $2 \leq d_G(u, w) \leq 3$. Furthermore, by the choice of C_1 and C_2 we know that:

1. w is adjacent to no vertex of C_2,
2. w is adjacent to no v_i, $i < l$,
3. v_l is adjacent to no vertex of C_2,
4. u is adjacent to no v_i, $i \leq l$, and
5. there is no $u - w$ path whose interior vertices are all endvertices of C_1 and C_2.

By (1) and (2), every adjacency of w other than v_l in G is an endvertex of C_1. Thus, by (4) and (5) there is no $u - w$ path of length 2. Therefore, $d_G(u, w) = 3$. Let u, x_1, x_2, w be a $u - w$ path of length 3. Then by (1) and (2), either $x_2 = v_l$ or x_2 is an endvertex of C_1. If $x_2 = v_l$ then by (3) and (4) it follows that x_1 is an endvertex of C_1. Subsequently C_1 can be extended by including x_1 in the spine and u as an endvertex, contradicting the maximality of C_1. Therefore x_2 is an endvertex of C_1. However, then by (4) and (5), x_1 must be a spine vertex of C_2 and again the maximality of C_1 is contradicted, and the proof is complete.

For even n, let G be the graph of order n obtained from the graph $K_{n/2} \cup \overline{K_{n/2}}$ by adding a matching between the set of $n/2$ isolated vertices and the remaining $n/2$ vertices. Then every spanning caterpillar has diameter $n/2 + 1$. Thus the (implied) bound in Theorem 4 of $n - 1$ on the smallest diameter of a spanning caterpillar is the correct order of magnitude for graphs of diameter 3. For graphs of diameter 2, some improvement can be
Spanning Caterpillars with Bounded Diameter

The following notation will be useful. Let G be a graph, u a vertex of G, and H a subgraph of G. Then

$$N_H[u] = \{w \in V(H) | uw \in E(G)\} \cup \{u\}.$$

Theorem 5. There is a constant c such that if G is a graph with $\text{diam}(G) = 2$, then G contains a spanning caterpillar of diameter at most $cn^{3/4}$.

Proof. We first show that G contains a dominating set with at most $2n^{3/4}$ vertices. Let u_1 be a vertex of G with $\text{deg}_G u_1 \geq n^{1/4}$ and set $U_1 = N_G[u_1]$. Let $u_2 \in V(G)$ with $\text{deg}_{G-U_1} u_2 \geq n^{1/4}$ and set $U_2 = N_{G-U_1}[u_2]$. Continue in this fashion to obtain a maximal length sequence of vertices u_1, u_2, \ldots, u_t, $t \geq 1$, where $\text{deg}_{G-U_1-U_2-\ldots-U_{t-1}} u_t \geq n^{1/4}$ and $U_l = N_{G-U_1-U_2-\ldots-U_{l-1}}[u_l]$ for $l = 1, 2, \ldots, t$, and let $A = V(G) - \bigcup_{i=1}^{t-1} U_i$. Then $t \leq n^{3/4}$ and $\Delta(\langle A \rangle) < n^{1/4}$. If $|A| < n^{3/4}$, then $A \cup \{u_1, u_2, \ldots, u_t\}$ is the desired dominating set. We show that this must be the case. Assume, to the contrary, that $|A| = kn^{3/4}$, where $k > 1$. Each of the $\binom{k}{2}$ pairs of vertices of A are at distance 1 or 2 in G. Since $\Delta(\langle A \rangle) < n^{1/4}$, $\langle A \rangle$ has fewer than $(|A| \cdot n^{3/4})/2$ edges. Furthermore, the number of pairs of vertices of A with a common neighbor in A is less than $|A| \cdot \binom{n^{3/4}}{2}$. Thus, more than

$$\binom{kn^{3/4}}{2} - \frac{kn}{2} - kn^{3/4} \cdot \binom{n^{1/4}}{2}$$

pairs of vertices of A have a common neighbor in $V(G) - A$, implying that more than

$$\frac{k^2n^{3/2}}{2} - \frac{kn}{2} - \frac{kn^{5/4}}{2}$$

pairs of vertices in A have a common neighbor in $V(G) - A$. However, each vertex in $V(G) - A$ is adjacent to fewer than $n^{1/4}$ vertices of A. Therefore, the number of pairs of vertices in A with a common neighbor in $V(G) - A$ is less than

$$n \cdot \binom{n^{1/4}}{2}.$$

We conclude that

$$\frac{k^2n^{3/2}}{2} - \frac{kn}{2} - \frac{kn^{5/4}}{2} < \frac{n^{3/2}}{2} - \frac{n^{5/4}}{2},$$

therefore, by (1) and by (3), γ_1 can be tracting over, then axiality

and $K_{n/2} \cup$ vertices and diameter smallest distance for not can be

contains

spanning star.
spanning diameter 3
hat G is
contains
such pairs
such that
(1) order
of C_2,
have been
let u be
Clearly,
Thus, now that:
which is a contradiction for $k > 1$ and n sufficiently large. Thus G has a dominating set X with $t \leq 2n^{3/4}$ vertices.

We complete the proof by showing that the vertices of X are contained in the spine S' of a caterpillar of G in which

1. consecutive vertices of X in $< S >$ are at distance at most 3 in $< S >$ and
2. $< S >$ begins and ends with a vertex of X.

Suppose $l < t$ vertices of X are contained in such a caterpillar C with spine S'. We assume that no vertex of X is an endvertex of C and that the endvertices of C have been “shifted left.” Furthermore, we assume that if $u \in V(G) - X - S'$ and u is adjacent to a vertex in S', then u is an endvertex of C. Let $x_1 \in X$ be the rightmost spine vertex of C and let $x_2 \in X - V(C)$. Furthermore, let w be an endvertex of C adjacent to x_1. If no such w exists, then we may replace x_1 in X by its predecessor on the spine S' and continue. Then $d_G(w, x_2) \leq 2$. If $wx_2 \in E(G)$ we can easily extend C to include w and x_2 as spine vertices. If $d_G(w, x_2) = 2$, then, as in the proofs of previous results, w and x_2 must have a common neighbor y that is not on the spine of C (where y may or may not be in X.) In either case, we can extend the spine of C to include w, y, x_2, and the proof is complete.

REFERENCES

Received 6 April 1994