DEGREE SETS FOR HOMogeneously TRACEABLE NONHAMILTONIAN Graphs

by

RONALD J. GOULD (ATLANTA, GEORGIA)

A graph G is homogeneously traceable if for each vertex v of G there exists a hamiltonian path of G with initial vertex v. While every hamiltonian graph is homogeneously traceable, not every homogeneously traceable graph is hamiltonian. For example, the Petersen graph is a homogeneously traceable nonhamiltonian graph. In [1] it was shown that homogeneously traceable nonhamiltonian graphs exist for all orders p except $3 < p < 8$. In the construction presented, every homogeneously traceable nonhamiltonian graph of order 9 and greater contained a vertex of degree 3.

R. Frucht (personal communication) asked if there exist homogeneously traceable nonhamiltonian graphs with only large degrees. Of course, the Petersen graph is cubic. It is the object of this paper to give a complete answer to this question.

The following result was established in [3] and will be useful.

Lemma. If G is homogeneously traceable of order $p \geq 3$, then G is 2-connected.

It is convenient to construct a class of graphs for use in our main result. Define the graphs H_{n+1}, $n \geq 1$, to consist of 2 disjoint cycles, C: $u_1, u_2, \ldots, u_{2n+1}$ and C': $v_1, v_2, \ldots, v_{2n+1}$, and for each $i = 1, 2, \ldots, 2n+1$ join u_i and v_i by a path P_i of length 2. Denote the vertex of degree 2 on P_i by t_i. These graphs are homogeneously traceable and nonhamiltonian for each $n \geq 1$.

The degree set of a graph G is the set of degrees of the vertices of G.

Theorem. Suppose $S = \{n_0, n_1, \ldots, n_k\}$ is a set of $k+1$ (≥ 1) positive integers and $n_i \geq 2$ for all i ($0 \leq i < k$). Then S is the degree set of a homogeneously traceable nonhamiltonian graph unless $S = (2)$.

Proof. Without loss of generality we assume that $n_0 < n_1 < \ldots < n_k$. Suppose $S = (2)$. Then, by the Lemma, G is 2-connected. Since G...
is 2-regular of order at least 3, then G is a cycle, and hence G is hamiltonian. Thus (3) is not the degree set of a homogeneously traceable nonhamiltonian graph. We now consider the converse. Suppose $S \neq (2)$. We distinguish three cases.

Case 1. Suppose $3 \in S$. If $S = (3)$, the Petersen graph satisfies the Theorem. If $S = (2, 3)$, the graph H_i suffices. Now, if $3 \in S$ but $S \neq (3)$ and $S \neq (2, 3)$, consider the graph H_l, where l is odd and $l > \max(3, k)$. We now construct a graph H from H_l.

If $n_k = 2$, then $n_2 = 3$ and each u_i and v_i ($i = 1, 2, \ldots, k$) has degree 3. For each $i = 1, 2, \ldots, k$ replace the vertex t_i (and its incident edges) by $M_i = K_{n_i - 2}$, where $e = x_iy_i \in E(K_{n_i - 1})$, that is, a copy of the complete graph on $n_i - 1$ vertices minus 1 edge. Then insert the edges $u_i x_i$ and $v_i y_i$. If $l > k$, repeat this argument with M_i, replacing each t_i, $k + 1 < i < l$. Then $\deg_{H_i} u_i - \deg_{H_i} v_i = 3$ and $\deg_{H_i} x_i = n_k$ for each $x_i \in V(M_i), i = 1, 2, \ldots, k$; for $l > k$ we have $\deg_{H_i} x_i = n_k$ if $x_i \in V(M_l), k + 1 < i < l$. Thus H has the degree set S.

To see that H is homogeneously traceable note that each M_i is hamiltonian connected as $\deg_{M_i} < (|V(M_i)| - 1)/2$ for each $v \in V(M_i), i = 1, 2, \ldots, l$. Thus, by Ore's theorem [2], M_i is hamiltonian connected. To find a hamiltonian path beginning with vertex u_i or v_i ($i = 1, 2, \ldots, l$) consider the path P_i in H_i beginning at u_i or, respectively, at v_i with vertex t_i replaced by a hamiltonian path through $M_i, i = 1, 2, \ldots, l$. Further, we can find a hamiltonian path with initial vertex $x_i \in V(M_i), i = 1, 2, \ldots, l$, by beginning with the hamiltonian path P_i in H_i with initial vertex t_i. If t_i is followed by u_i on P_i, then replace t_i by a hamiltonian $x_i - y_i$ path in M_i; similarly, if t_i is followed by v_i, then replace t_i by a hamiltonian $x_i - y_i$ path in M_i. Replace each t_j ($j \neq i$) by a hamiltonian $x_j - y_j$ on P_i, the replacement matching the order of u_j and v_j on P_i. Since each $M_i (i = 1, 2, \ldots, l)$ is hamiltonian connected and since there are hamiltonian paths in H_i with initial vertex t_i and second vertex either u_i or v_i, such substitutions yield a hamiltonian path in H with initial vertex t_i. Thus H is homogeneously traceable.

To see that H is not hamiltonian, suppose to the contrary that H is hamiltonian. Then we could start and end some hamiltonian cycle with some vertex $x \in V(M_i)$. Note that the vertices of any M_i must be consecutive (although their particular order may vary) in any hamiltonian cycle of H_i, as the edges $u_i x_i$ and $v_i y_i$ must be used. However, replacing the subsequence of vertices in M_i with t_i, we produce a hamiltonian cycle in H_i, which is impossible since H_i is nonhamiltonian. Thus H is homogeneously traceable nonhamiltonian with degree set S.

If $n_k = 2$, we repeat the last argument with vertices $t_j (j = 2, 3, \ldots, l)$, leaving t_1 unchanged. Then $\deg_{H_i} t_i = 2$ and again H has the degree set S.

An analogous argument shows H is homogeneously traceable and non-hamiltonian.

Case 2. Suppose $S = \{n_1, n_2, \ldots, n_k\}$ and $n_i \geq 4$ for $i = 0, 1, \ldots, k$. Again consider the graph H_l, where l is odd and $l \geq \max(S, k)$. We next construct a graph H from H_l.

Remove vertex u_i ($i = 1, 2, \ldots, l$) and its incident edges and in each case insert a copy of the graph $L_i = K_{n_{i+1}} - \{x_i, f_i, w_i\}$, where $x_i, f_i, w_i \in V(L_i)$. Then remove each vertex v_i ($i = 1, 2, \ldots, l$) and replace it with a copy of $M_i = K_{n_{i+1}} - \{s_i, t_i\}$ for $r_i, s_i, t_i \in V(M_i)$. Now insert the edges x_i, s_i, t_i for $i = 1, 2, \ldots, l-1$ and x_l, s_l, t_l.

Remove each vertex v_i and its incident edges ($i = 1, 2, \ldots, l$) and insert a copy of $G_i = K_{n_{i+1}} - \{a_i, b_i, c_i, d_i\}$, where $a_i, b_i, c_i, d_i \in V(G_i)$. Then add the edges $f_i, a_i, f_i, b_i, s_i, t_i, c_i, d_i$ ($i = 1, 2, \ldots, l$). If $l > h$, then let $G_i = G_h$ for each $i = k+1, k+2, \ldots, l$.

As before, the graphs G_i, M_i, and L_i ($i = 1, 2, \ldots, l$) are hamiltonian connected. An argument analogous to that in the last case shows that H is homogeneously traceable. Further, since at most one of the edges f_i, a_i, f_i, v_i (and similarly s_i, t_i, c_i, d_i) can appear on any hamiltonian path or cycle for each i, an analogous argument shows that H is not hamiltonian. Since H has the degree set S, case 2 is completed.

Case 3. Suppose $S = \{2, n_1, n_2, \ldots, n_k\}$ and $n_i \geq 4$ for $i = 1, 2, \ldots, k$. Here we proceed exactly as in case 2 except vertex u_i is not changed and the additional edge f_i, u_i is inserted. The graph H (see Fig. 3) so constructed has the degree set S. However, the edge f_i, u_i can appear on no hamiltonian path, so the argument of case 2 shows H to be homogeneously traceable and non-hamiltonian.

Fig. 2. The graph H (dotted lines represent missing edges in a complete graph)
REFERENCES

DEPARTMENT OF MATHEMATICS
EMORY UNIVERSITY
ATLANTA, GEORGIA

Reçu par la Rédaction le 15.8.1978