Partitioning Vertices of a Tournament into Independent Cycles

Guantao Chen

Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303

Ronald J. Gould

Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322

and

Hao Li

L.R.I., Bât. 490, Université Paris-Sud, 91405 Orsay Cedex, France

Received October 7, 1997; published online July 24, 2001

Let k be a positive integer. A strong digraph G is termed k-connected if the removal of any set of fewer than k vertices results in a strongly connected digraph. The purpose of this paper is to show that every k-connected tournament with at least $8k$ vertices contains k vertex-disjoint directed cycles spanning the vertex set. This result answers a question posed by Bollabás.

This article will generally follow the notation and terminology defined in [1]. A digraph is called strongly connected or strong if for every pari of vertices u and v there exists a directed path from u to v and a directed path from v to u. Let k be a positive integer. A digraph G is k-connected if the removal of any set of fewer than k vertices results in a strong digraph. A tournament with n vertices will also be called an n-tournament.

It is well-known that every tournament contains a hamiltonian path and every strong tournament contains a hamiltonian cycle. Reid [2] proved that if T is a 2-connected n-tournament, $n \geq 6$, that is, T is not the 7-tournament that contains no transitive subtournament with 4 vertices (i.e., the quadratic residue 7-tournament), then T contains two vertex-disjoint cycles

1 Research partially supported under N.S.F. Grant DMS 0070059.
2 Research partially supported under O.N.R. Grant N00014-97-1-0499.

0095-8956/01 35.00
© 2001 Elsevier Science
All rights reserved.
spanning $V(T)$. In fact, he showed that one cycle can be taken to be a triangle. This result established an affirmative answer (for $r = s = 1$) to the following problem asked by Thomassen (see [3]): If r and s are positive integers, does there exist a (least) positive integer $m = m(r, s)$ so that all but a finite number of m-connected tournaments can be partitioned into an r-connected subtournament and an s-connected subtournament? Song [4] was able to show that if T is a 2-connected n-tournament with $n \geq 6$ then the vertices of T can be partitioned into two cycles of lengths s and $n - s$ for any integer s with $3 \leq s \leq n - 3$, unless T is the 7-tournament described above. The following problem was posed by Bollobás (see [2]) for tournaments.

Problem 1. If k is a positive integer, what is the least integer $g(k)$ so that all but a finite number of $g(k)$-connected tournaments contain k vertex-disjoint cycles that span $V(T)$?

Reid observed that $g(k)$ exists and $g(k) \leq 3k - 4$ for $k \geq 2$ as follows: Recall that $g(1) = 1$ and $g(2) = m(1, 1) = 2$. If T is $(g(k - 1) + 3)$-connected, then the removal of a triangle leaves a $g(k - 1)$-connected tournament that can be expressed as $k - 1$ nontrivial vertex-disjoint cycles; that is, $g(k) \leq g(k - 1) + 3$. Thus, $g(3) \leq 5$, and, in general, $g(k) \leq 3k - 4$. The following example shows that $g(k) \geq k$.

Let $n \geq 3k$. Let T be an n-tournament with $V(T) = \{v_1, v_2, \ldots, v_n\}$, where v_i dominates v_j for all $1 \leq i < j \leq n$ except when $1 \leq i \leq k$ and $n - k + 1 \leq j \leq n$ (in which case v_j dominates v_i). If S is any set of fewer than k vertices, then $T - S$ is strongly connected; that is, T is k-connected. Clearly, any nontrivial cycle in T must use an arc $v_i v_j$ for some $1 \leq i < k$ and some $n - k + 1 \leq j \leq n$, so that T contains at most k vertex-disjoint cycles.

The main result of this article, stated below, shows that $g(k) = k$.

Theorem 1. Every k-connected n-tournament T with $n \geq 8k$ contains k vertex-disjoint cycles that span $V(T)$.

In [4], Song posed the following problem.

Problem 2. If k is a positive integer, what is the least integer $f(k)$ so that all but a finite number of $f(k)$-connected tournaments contain k vertex-disjoint cycles of lengths n_1, n_2, \ldots, n_k where $n = n_1 + n_2 + \cdots + n_k$ and $n_i \geq 3$ for all $i = 1, 2, \ldots, k$?

Clearly, $f(1) = g(1) = 1$. Song showed that $f(2) = g(2) = 2$. Clearly, $f(k) \geq g(k)$ holds for every k. Song conjectured that $f(k) = g(k)$. 214 CHEN, GOULD, AND LI
Let T be a tournament. The arc set of T will be denoted by $E(T)$. If $u \rightarrow v$ is an arc in T, then u dominates v and v is dominated by u. A set $A \subseteq V(T)$ dominates a set $B \subseteq V(T)$ if every vertex of A dominates every vertex of B. If $A = \{x\}$, we say that x dominates B. For any $X \subseteq V(T)$, let $T[X]$ denote the subtournament induced by X.

Let T be a tournament and let C be a cycle in T. For every vertex $v \in V(C)$, let v^+_C denote the successor of v on C and let v^-_C denote the predecessor of v on C. If no confusion arises, v^+ and v^- will be used to denote v^+_C and v^-_C, respectively. Let X be a cycle or a path of T and let u and v be two vertices on X (u, v are in that order along X if X is a path).

We define $X[u, v]$ as the subpath of X from u to v. For any $u \not\in V(C)$, if u is dominated by a vertex $x \in V(C)$ and u dominates x^+, then $ux^+ C[x^+, x] xu$ is a cycle longer than C. In this case, we say that u can be inserted into C. So, if u cannot be inserted into a cycle C, then either u dominates $V(C)$ or $V(C)$ dominates u. In the case, we call C an out-cycle of u while in the second case we call C an in-cycle of u. The following lemma will be used in the proof of Theorem 1.

Lemma 1. Every k-connected tournament with $n \geq 5k - 3$ vertices and $k \geq 2$ contains k vertex-disjoint cycles.

Proof. To the contrary, let $k \geq 2$ be the smallest positive integer such that there is a k-connected tournament T with $n \geq 5k - 3$ vertices, which does not contain k vertex-disjoint cycles. By the minimality of k and the fact that every strong tournament has a cycle, T contains $k - 1$ vertex-disjoint cycles. Since every cycle of length at least 4 contains a chord, T contains $k - 1$ vertex-disjoint triangles, say, T_1, T_2, ..., T_{k-1}. Let $H = T - \bigcup_{i=1}^{k-1} V(T_i)$. Since H does not contain a cycle, H is a transitive tournament. Let $P = v_1 v_2 \cdots v_m$ be the unique hamiltonian path in H. Since H is transitive, then $v_i v_j \in E(T)$ for any $1 \leq i < j \leq m$.

Let $F = \{v_1, v_2, ..., v_k\}$ and $B = \{v_{m-k+1}, v_{m-k+2}, ..., v_m\}$. Since $m \geq (5k - 3) - 3(k - 1) = 2k$, then $F \cap B = \emptyset$. Since T is k-connected, there exist k vertex-disjoint paths P_1, P_2, ..., P_k from B to F. Clearly, these paths plus the appropriate arcs from F to B form k vertex-disjoint cycles.

Proof of Theorem 1. Let T be a k-connected tournament with $n \geq 8k$ vertices. Since $8k \geq 5k - 3$, T contains k vertex-disjoint cycles by Lemma 1. Let C_1, C_2, ..., C_k be k vertex-disjoint cycles of T such that $\sum_{i=1}^{k} |V(C_i)|$ is maximum. Let $\mathcal{C} = \{C_1, C_2, ..., C_k\}$. To the contrary, then, we may assume that $\sum_{i=1}^{k} |V(C_i)| < n$. Let $H = T - \bigcup_{i=1}^{k} V(C_i)$. Since H is a tournament, H has a hamiltonian path. Let $P = v_1 v_2 \cdots v_m$ be a hamiltonian path in H. The linear order of $v_1, v_2, ..., v_m$ will play a role in our proof.
For each \(v_i \in V(H) \) (1 \(\leq i \leq m \)) and each \(C_r \in \mathcal{C} \) (1 \(\leq r \leq k \)), since \(v_i \) cannot be inserted into \(C_r \), \(C_r \) is either an in-cycle of \(v_i \) or an out-cycle of \(v_i \).

We partition \(\mathcal{C} \) into two sets \(\mathcal{F}_i \) and \(\mathcal{E}_i \) for each \(i = 1, 2, \ldots, m \) as

\[
\mathcal{F}_i = \{ C_r \mid C_r \text{ is an in-cycle of } v_i \},
\]

\[
\mathcal{E}_i = \{ C_r \mid C_r \text{ is an out-cycle of } v_i \}.
\]

For any two vertices \(v_i, v_j \in V(H) \) and a cycle \(C_r \in \mathcal{C} \), if \(i < j \) and \(C_r \) is an out-cycle of \(v_i \), then \(C_r \) is also an out-cycle of \(v_j \); otherwise, let \(x \) and \(x^+ \) be two consecutive vertices on \(C_r \). The cycle \(P[v_i, v_j] C_r[x^+, x] v_i \) is longer than \(C_r \) which leads to a contradiction of the maximality of \(\sum_{r=1}^{k} |V(C_r)| \). Thus, \(\mathcal{E}_i \subseteq \mathcal{E}_j \). As a consequence,

\[
\mathcal{E}_m \subseteq \mathcal{E}_{m-1} \subseteq \cdots \subseteq \mathcal{E}_1 \quad \text{and} \quad \mathcal{F}_m \supseteq \mathcal{F}_{m-1} \supseteq \cdots \supseteq \mathcal{F}_1.
\]

Claim 1. If \(S \) is a strong subtournament of \(H \), then \(\mathcal{F}_i = \mathcal{F}_j \) and \(\mathcal{E}_i = \mathcal{E}_j \) for any two vertices \(v_i \) and \(v_j \in V(S) \).

Proof. Suppose, to the contrary, that there is a cycle \(C_r \in \mathcal{C} \) such that \(C_r \in \mathcal{F}_i \) and \(C_r \in \mathcal{E}_j \). Let \(P[v_i, v_j] \) be a path in \(S \) connecting \(v_i \) and \(v_j \) and let \(x \) be an arbitrary vertex on \(C_r \). Then, the cycle \(P[v_i, v_j] C_r[x^+, x] v_i \) is longer than \(C_r \), a contradiction.

We will show that there exist \(k \) vertex disjoint cycles which contain all vertices of \(\bigcup_{r=1}^{k} V(C_r) \) and \(v_m \), which produces a contradiction. For convenience, let \(\mathcal{F} = \mathcal{F}_m \), \(\mathcal{E} = \mathcal{E}_m \), and \(H^* = H - v_m \).

Claim 2. \(\sum_{C_r \in \mathcal{F}} |V(C_r)| \geq k \) and \(\sum_{C_r \in \mathcal{E}} |V(C_r)| \geq k \).

Proof. Let \(S \) be the strong component containing \(v_m \) in \(H \). (Note that \(S \) could be \(\{ v_i \} \).) Since \(P = v_1 v_2 \cdots v_m \) is a hamiltonian path in \(H \), \(V(H) - V(S) \) dominates \(V(S) \). By Claim 1, \(\bigcup_{C_r \in \mathcal{F}} V(C_r) \) dominates \(V(S) \).

Also, \(S \) is the strong component of \(v_m \) in \(T[H] \cup \bigcup_{C_r \in \mathcal{F}} V(C_r) \). Thus, \(\sum_{C_r \in \mathcal{F}} |V(C_r)| \geq k \) is \(k \)-connected.

Since \(v_m \) dominates \(\bigcup_{C_r \in \mathcal{E}} V(C_r) \), \(V(H) \) dominates \(\bigcup_{C_r \in \mathcal{E}} V(C_r) \). As \(S \) is the strong component of \(v_m \) in \(T[H] \cup \bigcup_{C_r \in \mathcal{E}} V(C_r) \), we see that \(\sum_{C_r \in \mathcal{E}} |V(C_r)| \geq k \).

Without loss of generality, we may assume that \(\sum_{C_r \in \mathcal{F}} |V(C_r)| \geq \sum_{C_r \in \mathcal{E}} |V(C_r)| \). Otherwise, we may reverse the directions of all arcs of \(T \) and exchange the roles of \(v_1 \) and \(v_m \) and consider \(\mathcal{E}_1 \). Since \(\mathcal{E}_1 \supseteq \mathcal{E}_m \), \(\sum_{C_r \in \mathcal{E}_1} |V(C_r)| \geq \sum_{C_r \in \mathcal{E}_1} |V(C_r)| \).
Since \(|V(T)| = n \geq 8k\), we have that
\[
\sum_{C \in \mathcal{I}} |V(C)| + |V(H^*)| \geq 4k.
\]

Define
\[
R = \left\{ y \in \bigcup_{C \in \mathcal{I}} V(C) : xy \in E(T) \text{ for some } x \in \bigcup_{C \in \mathcal{I}} V(C) \right\}
\]
and
\[
U = \bigcup_{C \in \mathcal{I}} V(C) - R.
\]

That is, any \(y \in R\) is dominated by some vertices in \(\bigcup_{C \in \mathcal{I}} V(C)\) and any \(u \in U\) dominates all vertices in \(\bigcup_{C \in \mathcal{I}} V(C)\) for all \(u \in U\).

Claim 3. For each \(C_i \in \mathcal{I}\), \(|V(C_i) \cap R| \leq 3\) and equality holds only when \(C_i\) is a triangle.

Proof. Let \(x \in C_j \in \mathcal{I}\) and \(y \in V(C_i) \cap R\) such that \(xy \in E(T)\). If \(y = z \in E(T)\) for some \(z \in V(C_i) - \{y, y^-\}\), the cycles \(v_m C_i[z^+, y] C_j[y, z^-] v_m\) and \(C_i[z, y^-] y\) plus the remaining \(k - 2\) cycles of \(\mathcal{I}\) contradict the maximality of \(\sum_{C \in \mathcal{I}} |V(C)|\). Hence, \(V(C_i) - \{y, y^-\}\) dominates \(y^-\). Suppose \(w\) is another vertex in \(R \cap V(C_i)\). Similarly, we have that \(V(C_i) - \{w, w^-\}\) dominates \(w^-\). If \(w\) and \(y\) are not two consecutive vertices on \(C_i\), then \(w^-\) and \(y^-\) dominate each other, a contradiction. Thus, every two vertices in \(R \cap V(C_i)\) must be consecutive vertices on \(C_i\). Consequently, \(|R \cap V(C_i)| \leq 3\) and the equality holds only when \(C_i\) is a triangle.

Since \(\sum_{C \in \mathcal{I}} |V(C)| + |H^*| \geq 4k\) and \(|R \cap V(C_i)| \leq 3\) for each \(C_i \in \mathcal{I}\), then \(|U \cup H^*| = |U| + |V(H^*)| \geq k\) follows. Since \(T\) is \(k\)-connected and
\[
\ell = \ell_m \leq \ell_{m-1} \cdots \leq \ell_1,
\]
there exist \(k\) vertex-disjoint paths, \(P_i[x_i, y_i] (i = 1, 2, ..., k)\), such that \(x_i\) is in some cycle in \(\ell\) and \(y_i \in U \cup V(H^*)\) and all internal vertices of the path are in \(R \cup \{u\}\). Furthermore, we can assume that all internal vertices of the path \(P_i[x_i, y_i]\) are in \(R\). Otherwise, suppose that \(v_m \in V(P_i[x_i, y_i])\) for some \(i = 1, ..., k\). Let \(u\) be the predecessor of \(v_m\) on \(P_i[x_i, y_i]\) and \(w\) be the successor of \(v_m\) on \(P_i[x_i, y_i]\). We can suppose that \(u\) is in \(\mathcal{I}\) and \(b\) is in \(H^*\). So the arc \(uw\) belongs to \(T\), and thus \(v_m\) can be omitted in the path \(P_i[x_i, y_i]\).
For each $P_i[x_i, y_i]$, we define a *hop* to be two consecutive vertices u and u^* on $P_i[x_i, y_i]$ such that u and u^* are not consecutive vertices on the same cycle of \mathcal{C}. Let h_i be the number of hops on $P_i[x_i, y_i]$. We choose k vertex-disjoint paths $P_i[x_i, y_i]$, $P_2[x_2, y_2], \ldots, P_k[x_k, y_k]$ such that:

1. For each i, $x_i \in \bigcup_{C \in \mathcal{C}} V(C)$, $y_i \in U \cup V(H^\ast)$, and all internal vertices are in R.
2. Under Condition 1, $\sum_{i=1}^k h_i$ is minimum.
3. Under Conditions 1 and 2, $\sum_{i=1}^k |V(P_i[x_i, y_i])|$ is maximum.

A cycle $C_i \in \mathcal{C}$ is called a *used in-cycle* with respect to $P_i[x_i, y_i], \ldots, P_k[x_k, y_k]$ if C_i contains some vertices in $\bigcup_{j=1}^k V(P_j[x_j, y_j])$, otherwise it is called an *unused in-cycle*. Similarly, a cycle $C_i \in \mathcal{C}$ is called a *used out-cycle* if it contains some vertices in $\{x_1, x_2, \ldots, x_k\}$, otherwise it is called an *unused out-cycle*. All used in-cycles and out-cycles are called *used cycles* and all unused in-cycles and out-cycles are called *unused cycles*.

Claim 4. For each used in-cycle C_j, $V(C_j) - \bigcup_{i=1}^k V(P_i[x_i, y_i]) \subseteq R$.

Proof. Suppose, to the contrary, that there is a vertex $u \in U \cap (V(C_j) - \bigcup_{i=1}^k V(P_i[x_i, y_i]))$. Let u^* be the first vertex in $\bigcup_{i=1}^k V(P_i[x_i, y_i])$ along C_j in the reverse direction from u. Suppose that $u^* \in V(P_i[x_i, y_i])$. Let $P_i^* = P_i[x_i, u^*] C_j[u^*, u]$. If $u^* \neq y_i$, the number of hops on P_i^* is less than h_i, a contradiction to the minimality of $\sum_{i=1}^k h_i$. If $u^* = y_i$, the number of hops on $P_i^* = h_i$, but P_i^* is longer than $P_i[x_i, y_i]$, a contradiction to the maximality of $\sum_{i=1}^k |V(P_i[x_i, y_i])|$.

For each $i = 1, \ldots, k$, let C^\ast_i be the cycle in \mathcal{C} containing y_i and C_i^\ast be the cycle in \mathcal{C} containing x_i. Starting from x_i, let x_i^\ast be the first vertex along cycle C_i^\ast in the reverse direction from x_i such that $(x_i^\ast)^- \in \{x_1, x_2, \ldots, x_k\}$. For each $i = 1, 2, \ldots, k$, let

$$Q_i = C_i^\ast(x_i^\ast, x_i) P_i[x_i, y_i].$$

Clearly, all vertices in used out-cycles are in $\bigcup_{i=1}^k V(Q_i[x_i^\ast, y_i])$. By Claim 4, we choose k vertex-disjoint paths $Q_1[x_1, y_1], Q_2[x_2, y_2], \ldots, Q_k[x_k, y_k]$ such that:

1. For each $i = 1, 2, \ldots, k$, $x_i \in \bigcup_{C \in \mathcal{C}} V(C)$, $y_i \in U \cup V(H^\ast)$, and all internal vertices are in $\bigcup_{C \in \mathcal{C}} V(C)$.
2. For each used in-cycle C_j, $V(C_j) - \bigcup_{i=1}^k V(Q_i[x_i, y_i]) \subseteq R$.
3. For each used out-cycle C_j, $V(C_j) \subseteq \bigcup_{i=1}^k V(Q_i[x_i, y_i])$.
4. Under the above three conditions, $\sum_{i=1}^k |V(Q_i[x_i, y_i])|$ is maximum.
Let r be the number of unused cycles with respect to $Q_1[x_1, y_1]$, $Q_2[x_2, y_2], \ldots, Q_k[x_k, y_k]$. Let S be the set of vertices in used cycles but not in $\bigcup_{i=1}^k V(Q_i[x_i, y_i])$. Then, from Statements 2 and 3 above, $S \subseteq R$.

Note that \(\{y_1, y_2, \ldots, y_k\} \subseteq U \cup V(H^*) \) dominates $\bigcup_{C \in \mathcal{E}} V(C_i)$. In particular, we have $y_i \in V(T)$ for all $i = 1, 2, \ldots, k$ and $j = 1, 2, \ldots, k$.

If $S = \emptyset$, let

$$C_1^* = Q_1[x_1, y_1] y_1 v_m x_1,$$
$$C_i^* = Q_i[x_i, y_i] \quad \text{for} \quad i = 2, \ldots, k - r - 1,$$

and

$$C_{k-r}^* = Q_{k-r}[x_{k-r}, y_{k-r}, y_{k-r+1}] Q_{k-r+1}[x_{k-r+1}, y_{k-r+1}];$$
$$\cdots$$
$$C_k^* = Q_{k-r}[x_{k-r}, y_{k-r}, y_{k-r+1}] Q_k[x_k, y_k] x_{k-r}.$$

Let \mathcal{C}^* be the set containing the above cycles and all unused cycles. Clearly, \mathcal{C}^* contains exactly k vertex-disjoint cycles, and the union of the vertex sets of these cycles contains all vertices in $\bigcup_{i=1}^k V(C_i)$ and v_m, a contradiction to the maximality of $\sum_{i=1}^k |V(C_i)|$.

Thus, we conclude that $S \neq \emptyset$. Let $Q[w_1, w_2] = w_1 w_2 \cdots w_q$ be a hamiltonian path in $T[S]$.

Claim 5. w_1 dominates $\{y_1, y_2, \ldots, y_k\}$.

Proof. Suppose, to the contrary and without loss of generality, that $y_i \not\in E(T)$. Let

$$C_1^* = Q_1^*[x_1, y_1] Q[w_1, w_q] v_m x_1,$$
$$C_i^* = Q_i[x_i, y_i] x_i, \quad \text{for} \quad i = 2, \ldots, k - r - 1,$$

and

$$C_{k-r}^* = Q_{k-r}[x_{k-r}, y_{k-r}, y_{k-r+1}] Q_{k-r+1}[x_{k-r+1}, y_{k-r+1}];$$
$$\cdots$$
$$C_k^* = Q_{k-r}[x_{k-r}, y_{k-r}, y_{k-r+1}] Q_k[x_k, y_k] x_{k-r}.$$

In the same manner as before, these cycles lead to a contradiction of the maximality of $\sum_{i=1}^k |V(C_i)|$.

Claim 6. w_1 dominates $\bigcup_{i=1}^k V(Q_i[x_i, y_i])$.
Proof. Suppose, to the contrary, that there is a vertex \(u \in V(Q[x_i, y_i]) \) such that \(uw_1 \in E(T) \). Since \(w_1, y_i \notin E(T) \), there are two consecutive vertices \(u_i \) and \(u_i^+ \) on \(Q[x_i, y_i] \) such that \(uw_1 \in E(T) \) and \(w_1u_i \in E(T) \). Path \(Q[x_i, u_i] w_1 Q[u_i^+, y_i] \) plus the other \(k-1 \) paths contradict the maximality of \(\sum_{i=1}^{k} |V(Q[x_i, y_i])| \).

Since \(w_1 \in R \), there is a vertex \(x \in \bigcup_{C \in S} V(C) \) which dominates \(w_1 \). From Claim 6, \(x \) must be on an unused out-cycle \(C_s \) since \(\bigcup_{i=1}^{k} V(Q[x_i, y_i]) \) contains all vertices in all used out-cycles. Let \(x^+ \) be the successor of \(x \) on \(C_s \). We construct \(k-r+1 \) cycles as follows.

\[
C^*_1 = Q_1[x_1, y_1] C_i[x^+, x] Q[w_1, w_q] v_m v_1, \\
C^* = Q_i[x_i, y_i] x_i, \text{ for } i = 2, ..., k-r, \\
C^*_{k-r+1} = Q_{k-r+1}[x_{k-r+1}, y_{k-r+1}] Q_{k-r+2}[x_{k-r+2}, y_{k-r+2}] \cdots Q_k[x_k, y_k] x_{k-r+1}.
\]

These \(k-r+1 \) cycles and \(r-1 \) remaining unused cycles lead to a contradiction of the maximality of \(\sum_{i=1}^{k} |V(C_i)| \), which completes the proof of Theorem 1.

REFERENCES