On \(k \)-Ordered Bipartite Graphs

Jill R. Faudree
University of Alaska Fairbanks
Fairbanks, AK 99775
ffjrf@aurora.uaf.edu

Ronald J. Gould
Emory University
Atlanta, GA 30322
r@mathcs.emory.edu

Florian Pfender
Emory University
Atlanta, GA 30322
fpfende@mathcs.emory.edu

Allison Wolf
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
awolf@cc.gatech.edu

Submitted: Oct 30, 2001; Accepted: Mar 26, 2003; Published: Apr 15, 2003
MSC Subject Classifications: 05C35, 05C45

Abstract

In 1997, Ng and Schultz introduced the idea of cycle orderability. For a positive integer \(k \), a graph \(G \) is \(k \)-ordered if for every ordered sequence of \(k \) vertices, there is a cycle that encounters the vertices of the sequence in the given order. If the cycle is also a hamiltonian cycle, then \(G \) is said to be \(k \)-ordered hamiltonian. We give minimum degree conditions and sum of degree conditions for nonadjacent vertices that imply a balanced bipartite graph to be \(k \)-ordered hamiltonian. For example, let \(G \) be a balanced bipartite graph on \(2n \) vertices, \(n \) sufficiently large. We show that for any positive integer \(k \), if the minimum degree of \(G \) is at least \((2n+k-1)/4 \), then \(G \) is \(k \)-ordered hamiltonian.

1 Introduction

Over the years, hamiltonian graphs have been widely studied. A variety of related properties have also been considered. Some of the properties are weaker, for example traceability in graphs, while others are stronger, for example hamiltonian connectedness. Recently a new strong hamiltonian property was introduced in [3].

We say a graph \(G \) on \(n \) vertices, \(n \geq 3 \), is \(k \)-ordered for an integer \(k \), \(1 \leq k \leq n \), if for every sequence \(S = (x_1, x_2, \ldots, x_k) \) of \(k \) distinct vertices in \(G \) there exists a cycle that contains all the vertices of \(S \) in the designated order. A graph is \(k \)-ordered hamiltonian if for every sequence \(S \) of \(k \) vertices there exists a hamiltonian cycle which encounters the vertices in \(S \) in the designated order. We will always let \(S = (x_1, x_2, \ldots, x_k) \) denote the ordered \(k \)-set. If we say a cycle \(C \) contains \(S \), we mean \(C \) contains \(S \) in the designated order.
order under some orientation. The neighborhood of a vertex \(v \) will be denoted by \(N(v) \),
the degree of \(v \) by \(d(v) \), the degree of \(v \) to a subgraph \(H \) by \(d_H(v) \), and the minimum
degree of a graph \(G \) by \(\delta(G) \). A graph on \(n \) vertices is said to be \(k \)-linked if \(n \geq 2k \) and
for every set \(\{x_1, \ldots, x_k, y_1, \ldots, y_k\} \) of \(2k \) distinct vertices there are vertex disjoint paths
\(P_1, \ldots, P_k \) such that \(P_i \) joins \(x_i \) to \(y_i \) for all \(i \in \{1, \ldots, k\} \). Clearly, a \(k \)-linked graph is
also \(k \)-ordered.

In the process of finding bounds implying a graph to be \(k \)-ordered hamiltonian, Ng
and Schultz [3] showed the following:

Proposition 1. [3] Let \(G \) be a hamiltonian graph on \(n \) vertices, \(n \geq 3 \). If \(G \) is \(k \)-ordered,
\(3 \leq k \leq n \), then \(G \) is \((k−1)\)-connected.

Theorem 2. [3] Let \(G \) be a graph of order \(n \geq 3 \) and let \(k \) be an integer with \(3 \leq k \leq n \).
If
\[
d(x) + d(y) \geq n + 2k - 6
\]
for every pair \(x, y \) of nonadjacent vertices of \(G \), then \(G \) is \(k \)-ordered hamiltonian.

Faudree et al. [4] improved the last bound as follows.

Theorem 3. [4] Let \(G \) be a graph of sufficiently large order \(n \). Let \(k \geq 3 \). If
\[
\delta(G) \geq \begin{cases} \frac{n+k-3}{2}, & \text{if } k \text{ is odd} \\ \frac{n+k-2}{2}, & \text{if } k \text{ is even} \end{cases}
\]
then \(G \) is \(k \)-ordered hamiltonian.

Theorem 4. [4] Let \(G \) be a graph of sufficiently large order \(n \). Let \(k \geq 3 \). If for any two
nonadjacent vertices \(x \) and \(y \),
\[
d(x) + d(y) \geq n + \frac{3k - 9}{2},
\]
then \(G \) is \(k \)-ordered hamiltonian.

Theorem 5. [4] Let \(k \) be an integer, \(k \geq 2 \). Let \(G \) be a \((k+1)\)-connected graph of
sufficiently large order \(n \). If
\[
|N(x) \cup N(y)| \geq \frac{n+k}{2}
\]
for all pairs of distinct vertices \(x, y \in V(G) \), then \(G \) is \(k \)-ordered hamiltonian.

Much like results for hamiltonicity, smaller bounds are possible if we restrict \(G \) to be
a balanced bipartite graph. In fact, we get the following results:

Theorem 6. Let \(G(A \cup B, E) \) be a balanced bipartite graph of order \(2n \geq 618 \). Let
\(3 \leq k \leq \frac{4n}{105} \). If \(\delta(G) \geq 4k - 1 \) and for any two nonadjacent vertices \(x \in A \) and \(y \in B \),
\[
d(x) + d(y) \geq n + \frac{k-1}{2},
\]
then \(G \) is \(k \)-ordered hamiltonian.
The bound on the degree sum is sharp, as will be shown later with an example. The upper bound on k comes out of the proof, the correct bound should be a lot larger and possibly as large as $n/4$.

Corollary 7. Let G be a balanced bipartite graph of order $2n \geq 618$. Let $3 \leq k \leq \frac{n}{103}$. If
\[\delta(G) \geq \frac{2n + k - 1}{4} \]
then G is k-ordered hamiltonian.

Theorem 8. Let $G(A \cup B, E)$ be a balanced bipartite graph of order $2n \geq 618$. Let $3 \leq k \leq \min\{\frac{n}{103}, \frac{\sqrt{n}}{4}\}$. If for any two nonadjacent vertices $x \in A$ and $y \in B$, $d(x) + d(y) \geq n + k - 2$, then G is k-ordered hamiltonian.

The last bound is sharp, as the following graph G shows:

Let the vertex set $V := A_1 \cup A_2 \cup B_1 \cup B_2 \cup B_3$, with $|A_1| = |B_1| = k/2$, $|B_2| = k - 1$, $|A_2| = n - k/2$, $|B_3| = n - 3k/2 + 1$. Let the edge set consist of all edges between A_1 and B_1 minus a k-cycle, all edges between A_1 and B_2, and all edges between A_2 and the B_i for $i \in \{1, 2, 3\}$. Then G has minimum degree $\delta(G) = 3k/2 - 3$, minimal degree sum $n + k - 3$, and G is not k-ordered, as there is no cycle containing the vertices of $A_1 \cup B_1$ in the same order as the cycle whose edges were removed between A_1 and B_1. This example further suggests the following conjecture, strengthening Theorem 6 to a sharp result:

Conjecture 9. Let $G(A \cup B, E)$ be a balanced bipartite graph of order $2n$. Let $k \geq 3$. If $\delta(G) \geq \frac{3k - 1}{2} - 2$ and for any two nonadjacent vertices $x \in A$ and $y \in B$, $d(x) + d(y) \geq n + \frac{k - 1}{2}$, then G is k-ordered hamiltonian.

In some of the proofs the following theorem of Bollobás and Thomason[1] comes in handy.

Theorem 10. [1] Every $22k$-connected graph is k-linked.

2 Proofs

In this section we will prove Theorem 6 and Theorem 8.

From now on, A and B will always be the partite sets of the balanced bipartite graph G, and for a subgraph $H \subseteq G$, $H^A := H \cap A$ and $H^B := H \cap B$ will be its corresponding parts.

The following result and its corollary, which give sufficient conditions for k-ordered to imply k-ordered hamiltonian, will make the proofs easier.

Theorem 11. Let $k \geq 3$ and let $G(A \cup B, E)$ be a balanced bipartite, k-ordered graph of order $2n$. If for every pair of nonadjacent vertices $x \in A$ and $y \in B$
\[d(x) + d(y) \geq n + \frac{k - 1}{2}, \]
then G is k-ordered hamiltonian.
Proof: Let \(S = \{x_1, x_2, \ldots, x_k\} \) be an ordered subset of the vertices of \(G \). Let \(C \) be a cycle of maximum order 2 containing all vertices of \(S \) in appropriate order. Let \(L := G - C \). Notice that \(L \) is balanced bipartite, since \(C \) is. Let \(l := |L|/2 = |L^A| = |L^B| \).

Claim 1. Either \(L \) is connected or \(L \) consists of the union of two complete balanced bipartite graphs.

To prove the claim, it suffices to show that \(d_L(u) + d_L(v) \geq l \) for all nonadjacent pairs \(u \in L^A, v \in L^B \). Suppose the contrary, that is, there are two such vertices \(u, v \) with \(d_L(u) + d_L(v) < l \). Since \(d(u) + d(v) \geq n + (k - 1)/2 \), it follows that \(d_C(u) + d_C(v) \geq c + (k + 1)/2 \). There are no common neighbors of \(u \) and \(v \) on \(C \), hence there are at least \(k + 1 \) edges on \(C \) with both endvertices adjacent to \(\{u, v\} \). Fix a direction on \(C \). Say there are \(r \) edges on \(C \) directed from a \(u \)-neighbor to a \(v \)-neighbor, and \(t \) edges from a \(v \)-neighbor to a \(u \)-neighbor. Without loss of generality, let \(r \geq t \). On \(C \), between any two of the \(r \geq (k + 1)/2 \) edges of that type, there have to be at least two vertices of \(S \), else \(C \) could be enlarged (see Figure 1). Thus \(|S| \geq k + 1 \), a contradiction, which proves the claim. \(\diamond \)

![Figure 1:](image)

In particular, the claim shows that there are no isolated vertices in \(L \) and that all of \(L \)'s components are balanced.

Suppose \(l \geq 1 \). Let \(L_1 \) be a component of \(L \), \(L_2 := L - L_1 \), \(l_1 := |L_1|/2 \), and \(l_2 := |L_2|/2 \). The \(k \) vertices of \(S \) split the cycle \(C \) into \(k \) intervals: \([x_1, x_2], [x_2, x_3], \ldots, [x_k, x_1]\). Assume there are vertices \(x, y \in L_1 \) (\(x = y \) is possible) with distinct neighbors in one of the intervals of \(C \) determined by \(S \), say \([x_i, x_{i+1}]\). Let \(z_1 \) and \(z_2 \) be the immediate successor and predecessor on \(C \) to the neighbors of \(x \) and \(y \) respectively according to the orientation of \(C \). Observe that we can choose \(x \) and \(y \) and their neighbors in \(C \) such that none of the vertices on the interval \([z_1, z_2]\) have neighbors in \(L_1 \). We can also assume that \(z_1 \neq z_2 \), otherwise \(x = y \) by the maximality of \(C \), and bypassing \(z_1 \) through \(x \) would lead to a cycle of the same order, but the new outside component \(L_1 - x \) would not be balanced, a contradiction to claim 1. Let \(z \) be either \(z_2 \) or its immediate predecessor such that \(z_1 \) and \(z \) are from different parts. Since \(x \) and \(y \) are in the same component of \(L \), there is an \(x, y \)-path through \(L \). Let \(\tilde{y} \) be either \(y \) or its immediate predecessor on the path such that \(x \) and \(\tilde{y} \) are from different parts. If \(x = y \), let \(\tilde{y} \) be any neighbor of \(x \) in \(L \). Let \(R \) be the path on \(C \) from \(z_1 \) to \(z_2 \) and \(r := |R| \). Since \(C \) is maximal, the \(x, \tilde{y} \)-path
can’t be inserted, and since neither x nor \bar{y} have neighbors on R,
\[d(x) + d(\bar{y}) \leq 2l_1 + \frac{2c - r + 1}{2}. \]
Further, the z_1, z-path can’t be inserted anywhere on $C - R$, else C could be enlarged by inserting it and going through L instead (or in the case $x = y$ we would get a same length cycle with unbalanced outside components). Since z_1 and z have no neighbors in L_1, we get
\[d(z_1) + d(z) \leq 2l_2 + r + \frac{2c - r + 1}{2}. \]
Hence
\[d(x) + d(\bar{y}) + d(z_1) + d(z) \leq 2l_2 + 2l_1 + 2c + 1 = 2n + 1, \]
which contradicts (with $k \geq 3$) that
\[d(x) + d(z) \geq n + \frac{k - 1}{2} \]
and
\[d(\bar{y}) + d(z_1) \geq n + \frac{k - 1}{2}. \]
Thus, there is no interval $[x_i, x_{i+1}]$ with two independent edges to L_1. By Proposition 1, G is $(k - 1)$-connected, thus all but possibly one of the segments (x_i, x_{i+1}) have exactly one vertex with a neighbor in L_1.

Since $|N_C(L_1)| \leq k$, we assume without loss of generality that $|N_C(L_1^B)| \leq k/2$. Let $x \in L_1^B$ and let $|N_C(x)| = d \leq k/2$. Thus, for every $v \in C$ that is not adjacent to L_1 the degree sum condition implies:
\[d(v) \geq n + \frac{k - 1}{2} - (l_1 + d) = c + l_2 + (\frac{k}{2} - d - \frac{1}{2}). \]
On the other hand, we know $d(v) \leq c + l_2 - 1$. Thus, $d \geq 2$. Now we have shown that $N_{L_1}(C)$ includes vertices from both L_1^A and L_1^B. So, without loss of generality, assume L_1 has neighbors y and z in $(x_1 \ldots x_2)$ and $(x_2 \ldots x_3)$ respectively and such that y and z are in different partite sets.

Let y, z be the unique vertices in (x_1, x_2) and (x_2, x_3) respectively, which have neighbors in L_1. Since the successors of y and z are from different parts and not adjacent to L_1, they must be adjacent to each other. But now C can be extended, which is a contradiction.

This proves that L has to be empty. Therefore C is hamiltonian.

An immediate Corollary to Theorem 11 is the following:

Corollary 12. Let $k \geq 3$ and let G be a k-ordered balanced bipartite graph of order $2n$. If $\delta(G) \geq \frac{n}{2} + \frac{k-1}{4}$, then G is k-ordered hamiltonian.
To see that these bounds are sharp, consider the following graph $G(A \cup B, E)$:

$$A := A_1 \cup A_2, B := B_1 \cup B_2,$$

with

$$|A_1| = |B_1| = \left\lceil \frac{n}{2} + \frac{k - 1}{4} \right\rceil - 1,$$

$$|A_2| = |B_2| = n - |A_1|,$$

and

$$E := \{ab | a \in A_1, b \in B \} \cup \{ab | a \in A, b \in B_1 \}.$$

For n sufficiently large, G is obviously a k-connected, k-ordered, and balanced bipartite graph. The minimum degree is $\delta(G) = d(v) = |A_1|$ for any vertex $v \in B_2 \cup A_2$, thus the minimum degree condition is just missed. But G is not k-ordered hamiltonian, for if we consider $S = \{x_1, x_2, \ldots, x_k\}, \{x_1, x_3, \ldots\} \subseteq A_2, \{x_2, x_4, \ldots\} \subseteq B_2$. Let C be a cycle that picks up S in the designated order. Then $C \cap (A_1 \cup B_2)$ consists of at least $\lfloor k/2 \rfloor$ paths, all of which start and end in A_1. Therefore $|C \cap A_1| \geq |C \cap B_2| + (k - 1)/2$. If C was hamiltonian, it would follow that $|A_1| \geq |B_2| + (k - 1)/2$, which is not true.

The following easy lemmas will be useful.

Lemma 13. Let G be a graph, let $k \geq 1$ be an integer and let $v \in V(G)$ with $d(v) \geq 2k - 1$ for some k. If $G - v$ is k-linked, then G is k-linked.

Proof: This is an easy exercise. \(\square\)

Lemma 14. Let G be a $2k$-connected graph with a k-linked subgraph $H \subset G$. Then G is k-linked.

Proof: Let $S := \{x_1, \ldots, x_k, y_1, \ldots, y_k\}$ be a set of $2k$ vertices in G, not necessarily disjoint from H. Since G is $2k$-connected, there are $2k$ disjoint paths from S to H, including the possibility of one-vertex paths. Since H is k-linked, those paths can be joined in a way that k paths arise which connect x_i with y_i for $1 \leq i \leq k$. \(\square\)

Lemma 15. Let $k \geq 1$. Let $G(A \cup B, E)$ be a bipartite graph with $d(v) \geq \frac{|B|}{2} + \frac{3k}{2}$ for all $v \in A$, and $d(w) \geq 2k$ for all $w \in B$. Then G is k-linked.

Proof: Let $S := \{x_1, \ldots, x_k, y_1, \ldots, y_k\}$ be a set of $2k$ vertices in G. Pick a set $S' := \{x_1', \ldots, x_k', y_1', \ldots, y_k'\} \subset A$ as follows: If $x_i \in A$ set $x_i' = x_i$. Otherwise let x_i' be a neighbor of x_i not in S. Similarly pick the y_i'. It is possible to pick $2k$ different vertices for S' since $d(w) \geq 2k$ for all $w \in B$.

Now find disjoint paths of length 2 between x_i' and y_i' avoiding all the other vertices of S for $1 \leq i \leq k$. This is possible since $|N(x_i') \cap N(y_i')| \geq d(x_i') + d(y_i') - |B| \geq 3k$. \(\square\)

Proof of Theorem 6: By Theorem 11, it suffices to show that G is k-ordered.

Let K be a minimal cutset. If $|K| \geq 22k$, then G is k-linked by Theorem 10. Therefore it is k-ordered. Assume now that $|K| < 22k$. We have to deal with two cases.
Case 1. There is an isolated vertex \(v \in G - K \).

Since \(|K| = |N(v)| \geq \delta(G) \geq 4k - 1 \), \(G \) is \(2k \)-connected, thus by Lemma 14 it suffices to find a \(k \)-linked subgraph. Without loss of generality, let \(v \in B \). Let \(R = G - K - v \). Then \(d(w) > n - 22k \) for all \(w \in R^A \). So there are at least \((n - 22k)^2 \) edges in \(R \), resulting in less than \(23k \) vertices \(u \in R^B \) with \(d_R(u) < 2k \). Let \(H \) be the subgraph of \(R \) induced by \(R^A \) and the vertices of \(R^B \) with \(d_R(u) \geq 2k \). For \(w \in R^A \), we have \(d_H(w) \geq n - 45k \geq \frac{|H^B|}{2} + \frac{3k}{2} \), since \(n > 100k \). By Lemma 15, \(H \) is \(k \)-linked.

Case 2. There are no isolated vertices in \(G - K \).

First, observe that \(G - K \) has exactly two components. Otherwise, for the three components \(C_1, C_2, C_3 \) choose vertices \(v_i \in C_i^A, w_i \in C_i^B, 1 \leq i \leq 3 \). Then we can bound their degree sum as follows:

\[
2n + 2|K| \geq (|C_1| + |K|) + (|C_2| + |K|) + (|C_3| + |K|)
\geq (d(v_1) + d(w_1)) + (d(v_2) + d(w_2)) + (d(v_3) + d(w_3))
= (d(v_1) + d(w_2)) + (d(v_2) + d(w_3)) + (d(v_3) + d(w_1))
\geq 3(n + \frac{k - 1}{2}),
\]

a contradiction.

Call the two components \(L \) and \(R \). Without loss of generality, let \(|R| \geq |L| \) and \(|L^A| \geq |L^B| \). Let \(v \in L^A, w \in L^B, x \in R^A, y \in R^B \). Then

\[
|L^A| + |R^A| + |K^A| = |L^B| + |R^B| + |K^B| = n,
\]

\[
|L^B| + |R^A| + |K| \geq d(w) + d(x) \geq n + \frac{k - 1}{2},
\]

\[
|L^A| + |R^B| + |K| \geq d(v) + d(y) \geq n + \frac{k - 1}{2}.
\]

Thus, the inequalities above imply the parts of the components are of similar size:

\[
|L^A| - |L^B| \leq |K^B| - \frac{k - 1}{2},
\]

\[
|R^A| - |R^B| \leq |K^B| - \frac{k - 1}{2},
\]

\[
|R^B| - |R^A| \leq |K^A| - \frac{k - 1}{2}.
\]

Further, we get the following bounds for the degrees inside the components:

\[
d_R(y) \geq n + \frac{k - 1}{2} - d(v) - |K^A| \geq n + \frac{k - 1}{2} - |L^B| - |K^B| - |K^A| = |R^B| - (|K^A| - \frac{k - 1}{2}),
\]

\[
d_R(x) \geq |R^A| - (|K^B| - \frac{k - 1}{2}),
\]

\[
d_L(w) \geq |L^B| - (|K^A| - \frac{k - 1}{2}),
\]

\[
d_L(v) \geq |L^A| - (|K^B| - \frac{k - 1}{2}).
\]
Claim 1. \(R\) is \(k\)-linked.

By symmetry of the argument, we may assume that \(|R^B| \geq |R^A|\), thus

\[|R^B| \geq \frac{|R|}{2} \geq \frac{2n - |K| - |L|}{2} \geq \frac{n}{2} - \frac{|K|}{4}. \]

Now,

\[
d_R(y) \geq \frac{|R^B| - (|K^A| - \frac{k-1}{2})}{2} \geq \frac{|R^A|}{2} + \frac{|R^B|}{2} - |K| + \frac{k-1}{2} \geq \frac{103k}{4} - \frac{9(2k-1)}{8} + \frac{k-1}{2}.
\]

Further,

\[
d_R(x) \geq \frac{|R^A| - (|K^B| - \frac{k-1}{2})}{2} \geq |R^B| - |K| + \frac{k-1}{2} > 2k.
\]

Hence, the conditions of Lemma 15 are satisfied for \(R\), and \(R\) is \(k\)-linked. \(\diamondsuit\)

If \(|K| \geq 2k\), then \(G\) is \(k\)-linked by Lemma 14 and we are done. So assume from now on \(|K| < 2k\).

Claim 2. \(L\) is \(k\)-linked.

If \(|L| > n - 2k\), the proof is similar to the last case:

\[
d_L(v) \geq |L^A| - |K^B| + \frac{k-1}{2} > \frac{|L^B|}{2} + \frac{n - 2k}{4} - 2k + \frac{k-1}{2} > \frac{|L^B|}{2} + \frac{3k}{2},
\]

and

\[
d_L(w) \geq |L^A| - (|K^B| - \frac{k-1}{2}) > |L^B| - |K| > 2k.
\]

Applying Lemma 15 to \(L\) gives the result.

If \(|L| \leq n - 2k\), \(L\) is complete bipartite from the degree sum condition. Further, \(|L^A| \geq |L^B| \geq d(v) - |K^B| \geq 2k\) from the minimum degree condition, hence \(L\) is \(k\)-linked. \(\diamondsuit\)

Let \(S := \{x_1, x_2, \ldots, x_t\}\) be a set in \(V(G)\). We want to find a cycle passing through \(S\) in the prescribed order. Note that the minimum degree condition forces \(|R| \geq |L| \geq |K|\).

Assume \(|K| = \kappa(G) = k + t\) where \(t \geq -1\). Using the fact that \(K\) is a minimal cut set, by Hall’s Theorem (see for instance [2]) there is a matching of \(K\) into \(L\) and respectively \(K\) into \(R\), which together produce \(k + t\) pairwise disjoint \(P_3\)'s. Of all such matchings, pick one on either side with the fewest intersections with the set \(S\).

Observe that a vertex \(s \in K^B\) is either adjacent to every vertex of \(L^A\) or \(d(s) > n/4\). Otherwise there would be a vertex \(v \in L^A\) not connected to \(s\), and \(d(v) + d(s) \leq |L^B| + |K^B| + n/4 \leq n/2 - k + 2k + n/4\), a contradiction. A similar argument shows that the analog statement is true for \(s \in K^A\), since \(|L^A|\) and \(|L^B|\) differ by less than \(|K| < 2k\). Hence, each vertex \(s \in K\) has large degree to at least one of \(L\) or \(R\), in fact large enough that either \((L \cup \{s\})\) or \((R \cup \{s\})\) is \(k\)-linked.
Assign every vertex of K one by one to either L or R such that the new subgraphs \bar{L} and \bar{R} are still k-linked, applying Lemma 13 repeatedly. Left over from the P_3’s is now one matching with $k + t$ edges between \bar{L} and \bar{R}. We call an edge of this matching a double if both its endvertices are in S and a single if exactly one endvertex is in S. If an edge is disjoint from S, we call it free.

We claim that the number of doubles is at most t if k is even and at most $t + 1$ if k is odd. Let l^A (and respectively r^A) be the number of doubles which are edges between L^A and K^B (respectively between R^A and K^B). Define l^B and r^B similarly. Note that this means $d := l^A + l^B + r^A + r^B$ is the number of doubles. Let $v \in L^A - S$, $w \in L^B - S$, $x \in R^A - S$ and $y \in R^B - S$ such that none of those vertices are on an edge of the matching (this is possible since $|L^A| - |K^B| \geq 2k$, $|L^B| - |K^A| \geq 2k$ from the minimum degree condition). Then

$$2n + 2 \left\lfloor \frac{k - 1}{2} \right\rfloor \leq d(v) + d(w) + d(x) + d(y) \leq 2n + k + t - l^A - l^B - r^A - r^B.$$

If $d \geq t + 1$ for k even or $t + 2$ for k odd, we obtain a contradiction to the above inequality.

Let c be the number of elements of S that are not vertices on any of the $k + t$ edges of the matching. Then $t + d + c$ of the edges are free. We are now prepared to construct the cycle containing the set $\{x_1, x_2, \cdots, x_k\}$ by constructing a set of disjoint x_i, x_{i+1}-paths, using that \bar{L} and \bar{R} are k-linked. Note that in constructing each x_i, x_{i+1}-path, using a free edge is only necessary if (1) x_i is not on a single and (2) x_i and x_{i+1} are on different sides.

If k is even, these two conditions can occur at most $2d + c$ times. If k is odd, these two conditions can occur at most $2d - 1 + c$ times (because of the parity, condition 2 cannot occur for every vertex). But neither ever exceeds $t + d + c$, the number of free edges. Hence, we may form a cycle containing the elements of S in the appropriate order. \qed

Proof of Theorem 8: By Theorem 11 it suffices to show that G is k-ordered.

If the minimum degree $\delta(G) \geq 4k - 1$, then we are done by Theorem 6. Thus, suppose that $s \in A$ is a vertex with $d(s) < 4k - 1$. Let R be the induced subgraph of G on the following vertex set:

$$R^B := \{ v \in B : sv \notin E \},$$
$$R^A := \{ w \in A : d_{Rw} \geq 2k \}.$$

The degree sum condition guarantees $d(v) \geq n - 3k$ for all $v \in R^B$. Further, $|R^B| = n - d(s) \geq n - 4k + 2$. It is easy to see that $|R^A| > n - 4k$ and that all the conditions for Lemma 15 are satisfied. Hence, R is k-linked.

Let H be the biggest k-linked subgraph of G. If $G = H$, we are done. Otherwise, let $L := G - H$. The size of L is $|L| = 2n - |H| \leq 2n - |R| \leq 8k$. Observe that no vertex $v \in L$ has $d_H(v) > 2k - 2$, otherwise $V(H) \cup \{v\}$ would induce a bigger k-linked subgraph by Lemma 13. Hence, no vertex in L has degree greater than $10k$, and therefore, L is complete bipartite.

Define

$$\alpha := \min\{d_H(v) | v \in L^A \} \cup \{2k\},$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 10 (2003), #R11

9
\[
\beta := \min\{d_H(v) | v \in L^B \} \cup \{2k\}.
\]

Since \(L\) is small, there are vertices \(x \in H^A, y \in H^B\), with \(N(x) \cup N(y) \subset H\). If \(L^A = \emptyset\), then \(\alpha = 2k\), and if \(L^B = \emptyset\), then \(\beta = 2k\). Either way, we get \(\alpha + \beta \geq 2k\).

Now assume that \(L^A \neq \emptyset\) and \(L^B \neq \emptyset\). Let \(v \in L^A\) such that \(d_H(v) = \alpha\). Then
\[
n + k - 2 \leq d(v) + d(y) \leq |H^A| = d(v) + n - |L^A|.
\]
Thus, \(d(v) \geq |L^A| + k - 2\), and
\[
|L^B| + \alpha = d(v) \geq |L^A| + k - 2.
\]
Analogously, let \(w \in L^B\) with \(d_H(w) = \beta\), then
\[
n + k - 2 \leq d(w) + d(x) \leq |H^B| = d(w) + n - |L^B|,
\]
and thus \(d(w) \geq |L^B| + k - 2\) and
\[
|L^A| + \beta = d(w) \geq |L^B| + k - 2.
\]

Therefore,
\[
\alpha + \beta \geq 2k - 4.
\]

Let \(S := \{x_1, x_2, \ldots, x_k\}\) be a set in \(V(G)\). From now on, all the indices are modulo \(k\). To build the cycle, we need to find paths from \(x_i\) to \(x_{i+1}\) for all \(1 \leq i \leq k\).

If \(x_i\) and \(x_{i+1}\) are neighbors, just use the connecting edge as path. Now, for all other \(x_i \in L\) we find two neighbors \(y_i\) and \(z_i\) not in \(S\). If \(x_i\) and \(x_{i+i}\) have a common neighbor \(v\) which is not already used, set \(z_i = y_{i+1} = v\). Afterwards, we can find distinct \(y_i\) and \(z_i\) by the following count: Suppose \(x_i \in L^A\), so we need to find \(y_i, z_i \in N(x_i) - U_i\), where
\[
U_i := N(x_i) \cap \{x_j, y_j, z_j : |i - j| > 1\} \cup \{z_{i+1}, y_{i-1}\}.
\]
For every \(x_j \in L^A, |i - j| > 1\), there can be at most two vertices in \(U_i\). For \(x_j \in L^A, |i - j| = 1\), there can be at most one vertex in \(U_i\). For \(x_j \in B, |i - j| > 1\), there can be at most one vertex in \(U_i\). Hence,
\[
|U_i| \leq 2|L^A \cap S - \{x_{i-1}, x_i, x_{i+1}\}| + 2 + |B \cap S - \{x_{i-1}, x_i, x_{i+1}\}| \leq |L^A| + k - 4,
\]
and since \(d(x_i) \geq |L^A| + k - 2\), we can pick \(y_i\) and \(z_i\).

Try to choose as few \(y_i, z_i\) out of \(L\) as possible (i.e. pick as many as possible in \(H\)). Now for all \(y_i, z_j\), where \(y_i \neq z_{i-1}, z_j \neq y_{j+1}\), choose vertices \(y'_i, z'_i \in H\) as follows: If \(y_i \in H\), let \(y'_i = y_i\), if \(z_i \in H\), let \(z'_i = z_i\). Otherwise, let \(y'_i\) be a neighbor of \(y_i\) in \(H\), and let \(z'_i\) be a neighbor of \(z_i\) in \(H\), which is not already used. We need to check if there is a vertex in \(N(y_i) \cap H\) available.

Let \(O_i = (N(x_i) \cup N(y_i)) \cap H\). We know that
\[
|O_i| = d_H(x_i) + d_H(y_i) \geq \alpha + \beta \geq 2k - 4.
\]
For every $j \notin \{i-1, i, i+1\}$, $|O_i \cap \{x_j, y_j, z_j, y'_j, z'_j\}| \leq 2$, and for $j = i+1$, $|O_i \cap \{x_j, y_j, y'_j\}| \leq 1$. This is a total count of at most $2k-5$, at least one is left over for y'_i. Observe that $y'_i \notin N(x_i)$, otherwise we would have chosen it to be y_i, so in fact $y'_i \in N(y_i)$. A similar count shows the availability of a vertex for z'_i, with one possible exception: The one vertex left over could be y'_i. This is only a problem if the count for y'_i gave us exactly one available vertex, otherwise we can just pick a different y'_i. But now we can switch the vertices y_i and z_i, and choose y'_i from $\{x_{i+1}, y_{i+1}, y'_{i+1}\}$ (one of those is in $N(x_i) \cup N(y_i)$, since the count of used vertices gave exactly $2k-5$), and choose z'_i from $\{x_{i-1}, y_{i-1}, y'_{i-1}\}$.

For all $x_i \in H$, set $y'_i = z'_i = x_i$. Since H is k-linked, we can now find z'_i, y'_{i+1}-paths inside H for all needed indices to complete the cycle. \qed

3 Further Results

We also looked at the following closely related property:

Definition 1. We say a graph G is k-ordered connected if for every sequence $S = (x_1, x_2, ..., x_k)$ of k distinct vertices in G, there exists a path from x_1 to x_k that contains all the vertices of S in the given order. A graph is k-ordered hamiltonian connected if there is always a hamiltonian path from x_1 to x_k which encounters S in the designated order.

Along the lines of the proofs in [4], you can show the following theorems for this property:

Theorem 16. Let G be a graph of sufficiently large order n. Let $k \geq 3$. If

$$\delta(G) \geq \frac{n + k - 3}{2},$$

then G is k-ordered hamiltonian connected.

Theorem 17. Let G be a graph of sufficiently large order n. Let $k \geq 3$. If for any two nonadjacent vertices x and y, $d(x) + d(y) \geq n + \frac{3k-6}{2}$, then G is k-ordered hamiltonian connected.

The proofs do not give any new insights, so we will not present them here.

References

