\(\delta(G) \geq 2 \) implies \(G \) contains a cycle.

Theorem (Corradi and Hajnal)

If \(\delta(G) \geq 2k \) and \(|G| \geq 3k \) then \(G \) contains \(k \) vertex disjoint cycles.
Question

What conditions imply a graph contains a cycle with a chord?

Here a *chord* is an edge between two vertices on the cycle that is not an edge of the cycle.
Question

What conditions imply a graph contains a cycle with a chord?

Here a *chord* is an edge between two vertices on the cycle that is not an edge of the cycle.
First answer by J. Czipzer $\delta(G)$

Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.
Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.

longest path in G
Theorem

If G has minimum degree at least 3, then G contains a chorded cycle.
\(\delta(G) \geq 3 \) implies a chorded cycle.

Theorem

If \(G \) *is a graph on* \(n \geq 4k \) *vertices with minimum degree at least* \(3k \), *then* \(G \) *contains at least* \(k \) *independent chorded cycles.*

Note: A generalization of Corradi-Hajnal.
\(\delta(G) \geq 3 \) implies a chorded cycle.

Theorem

If G is a graph on \(n \geq 4k \) vertices with minimum degree at least \(3k \), then G contains at least k independent chorded cycles.

Note: A generalization of Corradi-Hajnal.

Theorem

Let G be a graph of order \(n \geq 3k \) and suppose that \(\delta(G) \geq 2k \), then G contains k disjoint cycles.
That \(n \geq 4k \) is clearly needed as the cycles need at least 4 vertices each.

For \(m \geq 6k - 2 \), the graph \(K_{3k-1,m-3k+1} \) has \(\delta = 3k - 1 \) and no collection of \(k \) independent chorded cycles, as chorded cycles here require 3 vertices from each partite set.
Theorem

If G is a graph on $n \geq 4k$ vertices such that for any pair of non-adjacent vertices x, y,

$$|N(x, y)| \geq 4k + 1,$$

then H contains at least k independent chorded cycles.
Theorem

If \(G \) is a graph on \(n \geq 6k \) vertices with \(\sigma_2(G) \geq 6k - 1 \), then \(G \) contains \(k \) vertex disjoint doubly chorded cycles.
A special case: Cliques

\[K_5: \text{4-regular but with 5 chords} \]
In general:

Given a K_{k+1}: It is k-regular with

$$f(k) = \frac{(k - 2)(k + 1)}{2}$$

chords. We think of $f(k)$ chorded cycles as "loose K_{k+1} cliques".
Note: There are no single chorded cliques.

Theorem

Ali, Staton - 1999

If $\delta(G) = k$, then G contains a

$$\left\lceil \frac{k(k - 2)}{2} \right\rceil$$

— chorded cycle.
Question: Where do chorded cycles fit in???

Note: There are no single chorded cliques.

Theorem

Ali, Staton - 1999

If $\delta(G) = k$, *then* G *contains a*

$$\left\lceil \frac{k(k - 2)}{2} \right\rceil - \text{chorded cycle.}$$

Corollary

If $\delta(G) \geq 3$, *then* G *contains a doubly chorded cycle - that is, a* loose K_4.

Ron Gould Emory University On Cycles with Many Chords
Theorem

If $\delta(G) = k$, then G contains an

$$f(k) = \frac{(k + 1)(k - 2)}{2} - \text{chorded cycle.}$$
Theorem

If \(\delta(G) = k \), then \(G \) contains an

\[
f(k) = \frac{(k + 1)(k - 2)}{2} \quad \text{chorded cycle.}
\]

longest path in \(G \)
Theorem

If $\delta(G) = k$, then G contains an

$$f(k) = \frac{(k + 1)(k - 2)}{2}$$

chorded cycle.

longest path in G
Theorem

If $\delta(G) = k$, then G contains an

$$f(k) = \frac{(k + 1)(k - 2)}{2}$$

chorded cycle.

longest path in G
The story so far:

Lower End: \(\delta(G) \geq k \) implies an \(f(k) = \frac{(k-1)(k+2)}{2} \)-chorded cycle.

Upper End:

Theorem

Hajnal and Szemerédi

If \(\delta(G) \geq kt, |G| = (k + 1)t \), then \(G \) can be covered by \(t \) vertex disjoint \(K_{k+1} \)'s.
Conjecture:

If $\delta(G) \geq kt$, and $|G| \geq (k+1)t$ then G contains t

$$f(k) = \frac{(k+1)(k-2)}{2}$$ – chorded cycles.
Conjecture:

If $\delta(G) \geq kt$, and $|G| \geq (k + 1)t$ then G contains t

$$f(k) = \frac{(k + 1)(k - 2)}{2}$$ — chorded cycles.

Tight End: Hajnal-Szemerédi Theorem.
Conjecture:

If $\delta(G) \geq kt$, and $|G| \geq (k + 1)t$ then G contains t chorded cycles.

$$f(k) = \frac{(k + 1)(k - 2)}{2}$$

Tight End: Hajnal-Szemerédi Theorem.
If $t = 1$, this is our first Theorem.
Conjecture:

If $\delta(G) \geq kt$, and $|G| \geq (k + 1)t$ then G contains t

$$f(k) = \frac{(k + 1)(k - 2)}{2}$$

— chorded cycles.

Tight End: Hajnal-Szemerédi Theorem.
If $t = 1$, this is our first Theorem.
We show it is true for some classes of graphs, and for graphs with some extra "room".
Theorem

There exist k_0, t_0 such that if $\delta(G) \geq kt$, where $k \geq k_0$, $t \geq t_0$ and $n \geq n_0(k, t)$, then G contains t chorded cycles.

$$f(k) = \frac{(k + 1)(k - 2)}{2}$$
Theorem

There exist k_0, t_0 such that if $\delta(G) \geq kt$, where $k \geq k_0$, $t \geq t_0$ and $n \geq n_0(k, t)$, then G contains t

$$f(k) = \frac{(k + 1)(k - 2)}{2} - \text{chorded cycles.}$$

- Bounds for k_0 and t_0 show a tradeoff.
Theorem

There exist k_0, t_0 such that if $\delta(G) \geq kt$, where $k \geq k_0$, $t \geq t_0$ and $n \geq n_0(k, t)$, then G contains t

$$f(k) = \frac{(k + 1)(k - 2)}{2}$$ - chorded cycles.

- Bounds for k_0 and t_0 show a tradeoff.
- Bounds for n_0 quite large.
What can we say about $f(k)$-chorded cycle free graphs?

- minimum degree $\leq k - 1$,
What can we say about $f(k)$-chorded cycle free graphs?

- minimum degree $\leq k - 1$,
- $k - 1$ degenerate,
What can we say about $f(k)$-chorded cycle free graphs?

- minimum degree $\leq k - 1$,
- $k - 1$ degenerate,
- At least two vertices of degree $\leq k - 1$.
What can we say about $f(k)$-chorded cycle free graphs?

- minimum degree $\leq k - 1$,
- $k - 1$ degenerate,
- At least two vertices of degree $\leq k - 1$.

Problem: Not very useful!
Theorem

Let \(d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil \).

- If \(G \) has average degree at least \(2d \), then \(G \) contains a \(f(k) = \frac{(k+1)(k-2)}{2} \)-chorded cycle.
- There exist graphs with average degree \(2d - o(1) \) with no \(f(k) \)-chorded cycle.
The harmonic average degree is

$$\hat{d} = \frac{n}{\sum_v 1/\text{deg}(v)}.$$

If $\hat{d} > k + 1$, does G contain an $f(k)$-chorded cycle?
Question

The harmonic average degree is

$$\hat{d} = \frac{n}{\sum_v 1/\text{deg}(v)}.$$

If $\hat{d} > k + 1$, does G contain an $f(k)$-chorded cycle?

Question

If G is $f(k)$-chorded cycle free, is it true that

$$| \{ v : \text{deg}(v) \leq k - 1 \} | \geq | \{ v : \text{deg}(v) \geq 2k - 1 \} |.$$
Question

The harmonic average degree is

$$\hat{d} = \frac{n}{\sum_v 1/\deg(v)}.$$

If $\hat{d} > k + 1$, does G contain an $f(k)$-chorded cycle?

Question

If G is $f(k)$-chorded cycle free, is it true that

$$| \{ v : \deg(v) \leq k - 1 \} | \geq | \{ v : \deg(v) \geq 2k - 1 \} |.$$

Remark: Can’t replace $2k - 1$ with $2k - 2$.
Theorem

Let $d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$.

- If G has average degree at least $2d$, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$-chorded cycle.
- There exist graphs with average degree $2d - o(1)$ with no $f(k)$-chorded cycle.
More

Theorem

Let \(d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil \).

- If \(G \) has average degree at least \(2d \), then \(G \) contains a \(f(k) = \frac{(k+1)(k-2)}{2} \)-chorded cycle.
- There exist graphs with average degree \(2d - o(1) \) with no \(f(k) \)-chorded cycle.

Sharpness: Bipartite graph \(K_{d,n} \).
Theorem

Let $d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil$.

- If G has average degree at least $2d$, then G contains a $f(k) = \frac{(k+1)(k-2)}{2}$-chorded cycle.
- There exist graphs with average degree $2d - o(1)$ with no $f(k)$-chorded cycle.

- Sharpness: Bipartite graph $K_{d,n}$.
- $k = 2, 3, 4$: Trivial induction removing vertex of lowest degree if $< \delta$.
Theorem

Let \(d = \left\lceil \sqrt{\frac{k(k-1)}{2}} \right\rceil \).

- If \(G \) has average degree at least \(2d \), then \(G \) contains a \(f(k) = \frac{(k+1)(k-2)}{2} \)-chorded cycle.
- There exist graphs with average degree \(2d - o(1) \) with no \(f(k) \)-chorded cycle.

Sharpness: Bipartite graph \(K_{d,n} \).

- \(k = 2, 3, 4 \): Trivial induction removing vertex of lowest degree if \(< \delta \).
- \(k \geq 5 \) much tougher induction.