A spanning cycle in a graph G is called a \textit{hamiltonian cycle}, and if such a cycle exists G is said to be \textit{hamiltonian}. Let H be any subgraph of G. If there is a hamiltonian cycle C in G such that $E(C) \cap E(H) = \emptyset$ (alternatively, if $G - E(H)$ is hamiltonian) then we will call C an \textit{H-avoiding hamiltonian cycle} and we say that G is \textit{H-avoiding hamiltonian}. In this talk, we will give conditions that assure G is H-avoiding hamiltonian for various choices of H. In particular, we will consider the case where H is an edge-disjoint family of hamiltonian cycles or an edge-disjoint family of perfect matchings.