ON MINIMUM DEGREE IMPLYING THAT A GRAPH IS H-LINKED

RONALD J. GOULD*, ALEXANDR KOSTOCHKA†, AND GEXIN YU‡

ABSTRACT. Given a fixed multigraph H, possibly containing loops, with $V(H) = \{h_1, \ldots, h_m\}$, we say that a graph G is H-linked if for every choice of m vertices v_1, \ldots, v_m in G, there exists a subdivision of H in G such that v_i is the branch vertex representing h_i (for all i). This generalizes the concept of k-linked graphs (as well as a number of other well-known path or cycle properties). In this paper we determine a sharp lower bound on $\delta(G)$ (which depends upon H) such that each graph G on at least $10(|V(H)| + |E(H)|)$ vertices satisfying this bound is H-linked.

1. Introduction

For terms not defined here, see [8]. A graph is k-linked if for every sequence of $2k$ vertices, $v_1, \ldots, v_k, w_1, \ldots, w_k$, there are internally disjoint paths P_1, \ldots, P_k such that P_i joins v_i and w_i. The literature contains numerous results and important open problems dealing with k-linked graphs. In this paper we are concerned with the following generalization of k-linked graphs.

Let H be a multigraph. An H-subdivision in a graph G is a pair of mappings $f : V(H) \rightarrow V(G)$ and $g : E(H)$ into the set of paths in G such that:

(a) $f(u) \neq f(v)$ for all distinct $u, v \in V(H)$;
(b) for every $uv \in E(H)$, $g(uv)$ is an $f(u), f(v)$-path in G, and distinct edges map to internally disjoint paths in G.

A graph G is H-linked if every injective mapping $f : V(H) \rightarrow V(G)$ can be extended to an H-subdivision in G.

This idea originated with Jung [6], but had not been significantly developed until recently, when the concept was considered independently in [3] and [7], then in [4], [5], [1], and [2]. In [4] and [5], for loopless multigraphs H with k edges and minimum degree at least two, sharp lower bounds on the minimum degree sufficient to imply that any graph G on at least $7.5|E(H)|$ vertices is H-linked were provided. In [1], a similar bound on the minimum degree was given for more general multigraphs H but only for graphs G with exponentially (in $|V(H)|$) many vertices. Also, in [2] and [5], degree conditions for extending H-linkages to span the vertex set of G were explored, showing ties of H-linked graphs to a number of well-known path and cycle questions. The purpose of this paper is to provide, for all multigraphs H possibly containing...
loops, a lower bound on $\delta(G)$, sufficient to ensure that any such sufficiently large G will be H-linked. The bound on $\delta(G)$ will be sharp for every H and the bound on the order of G will be linear in $|E(H)| + |V(H)|$.

We begin with some definitions. With a slight abuse of notation, we will say that a multigraph H is acyclic if it does not contain cycles other than loops. Denote by $c(H)$ the number of acyclic components of H. Let

$$b(H) = \begin{cases} |V(H)| - 1, & \text{if } H \text{ is a forest,} \\ \max_{X \subseteq V(H)} e(X, V(H) - X) + c(H), & \text{otherwise.} \end{cases}$$

Our main result is the following:

Theorem 1. Let H be a multigraph with $e(H)$ edges (loops or non-loops) and let $k_1 = k_1(H) = e(H) + c(H)$. Let G be a simple graph of order at least $9.5(k_1 + 1)$. If

$$\delta(G) \geq \left\lceil \frac{n + b(H)}{2} \right\rceil - 1,$$

then G is H-linked. Moreover, every injective mapping $f : V(H) \to V(G)$ can be extended to an H-subdivision in G containing at most $5k_1 + 2$ vertices.

Observe that the restriction (1) cannot be weakened. To see this, suppose first that the multigraph H has no acyclic components and hence $b(H) = \max_{X \subseteq V(H)} e(X, V(H) - X)$. Suppose that this cut determines a partition of $V(H)$ into sets X and Y. Let G be formed from two complete graphs G_1 and G_2 of order l that intersect on $b(H) - 1$ vertices. If the set S chosen as the image of $V(H)$ under f is such that the vertices of X lie in $G_1 - G_2$ and the vertices of Y lie in $G_2 - G_1$, then $G_1 \cap G_2$ is not large enough to allow an embedding of H. Further, $\delta(G) = l - 1$. Since $|V(G)| = 2l - b(H) + 1$, we see that $\delta(G) = \frac{n + b(H) - 3}{2}$. Thus, (1) is necessary in this case. To see the reason for the definition of $b(H)$ when H has both acyclic components and components containing cycles, consider the same graph G as above. Now, if the set S which is the image of $V(H)$ under f has the vertices of each acyclic component in $G_1 \cap G_2$, then the need to define $b(H)$ as above becomes clear. If every component of H is acyclic, we will choose S to have the vertices of all but one component from H in $G_1 \cap G_2$ and then place the vertices of the remaining component into $G_1 - G_2$ and $G_2 - G_1$ according to its natural bipartition.

In the next three sections we prove Theorem 1 for the case of loopless H, and in the final section we prove the theorem in full generality.

2. Preliminaries

In this and the next two sections we consider only loopless H. If H' is obtained from H by adding an edge e' and if $k_1(H') \leq k_1(H)$ and $b(H') \leq b(H)$, then, since $H' \supset H$, the fact that a graph G is H'-linked implies that G is H-linked. If H has at least two components and a component H_1 of H is acyclic, then by adding an edge connecting H_1 with another component, we decrease $c(H)$. This means that $b(H)$ and $k_1(H)$ do not change. Thus, it is enough to consider only the cases when H is a tree or has no acyclic components. Further, if H is a
tree on at least 3 vertices, then adding to H an edge connecting two vertices at distance two decreases $c(H)$ and keeps $b(H) = |V(H)| - 1$. If H is a tree on 2 vertices, then $H = K_2$ and hence $b(H) = 1$. Thus, it suffices to prove the case when H has no acyclic components or $H = K_2$.

Suppose that $c(H) = k$. Let $f : V(H) \to V(G)$ be an injective mapping and $W = f(V(H))$. Let $E(H) = \{e_j = u_j^0v_j^0 : 1 \leq j \leq k\}$. Let $u_j = f(u_j^0)$ and $v_j = f(v_j^0)$.

If $H = K_2$, then $k = 1$ and $b(H) = 1$. In this case, if an n-vertex graph G satisfies the conditions of the theorem, then $\delta(G) \geq (n - 1)/2$. Therefore u_1 and v_1 either are adjacent or have a common neighbor. This settles the case of $H = K_2$, and from now on we assume that H has no acyclic components. In this case, $k_1 = k$ by the definition of k_1 and $|W| = |V(H)| \leq k$.

For each edge $e_j = u_j^0v_j^0 \in E(H)$, we define functions $\beta(e_j, u_j^0), \beta(e_j, v_j^0)$ inductively as follows:

If H has no vertices of degree one, then for every j, let $\beta(e_j, u_j^0) = 1/\deg_H(u_j^0)$ and $\beta(e_j, v_j^0) = 1/\deg_H(v_j^0)$.

If H has a pendant vertex u_s^0 (which is incident with the edge $e_s = u_s^0v_s^0$), let $H' = H - u_s^0$. Since H' is a smaller graph without acyclic components, we can define $\beta(e_j, u_j^0), \beta(e_j, v_j^0)$ for every $j \neq s$ and then let $\beta(e_s, u_s^0) = 1$ and $\beta(e_s, v_s^0) = 0$.

For simplicity, we denote $\beta(e_j, u_j^0)$ by β_j, and $\beta(e_j, v_j^0)$ by γ_j. By construction, for every $j = 1, \ldots, k$,

\begin{equation}
0 \leq \beta_j, \gamma_j \leq 1 \text{ and } \beta_j + \gamma_j \leq 1.
\end{equation}

Also, for every $u^0 \in V(H)$,

\begin{equation}
\sum_{\{e \in E(H) : u^0 \in e\}} \beta(e, u^0) = 1, \quad \text{and hence} \quad \sum_{j=1}^{k} (\beta_j + \gamma_j) = |V(H)| = |W|.
\end{equation}

Say that a family C of the form $\{P_1, \ldots, P_k\}$ is a partial H-linkage if each P_j is either the set $\{u_j, v_j\}$ or a u_j, v_j-path and the following properties hold:

(I) $|X| \leq |W| + 3k - 2b(H) + 2\alpha + 3$, where $X = \bigcup_{j=1}^{k} V(P_j)$ and α is the number of P_j-s that are paths;

(II) the internal vertices of the paths P_j’s are pairwise disjoint and disjoint from W.

Consider $C_0 = \{\{u_1, v_1\}, \ldots, \{u_k, v_k\}\}$. This family satisfies the properties (I) and (II) above with $X = \bigcup_{j=1}^{k} \{u_j, v_j\} = W$ and $\alpha = 0$. Therefore, C_0 is a partial H-linkage.

A partial H-linkage $C = \{P_1, \ldots, P_k\}$ is optimal, if as many as possible of the P_j-s are paths and subject to this the set $X = \bigcup_{j=1}^{k} V(P_j)$ is as small as possible. We will prove that an optimal partial H-linkage is an H-subdivision. This will imply our theorem (for loopless H).

Suppose, to the contrary, that $C = \{P_1, \ldots, P_k\}$ is an optimal partial H-linkage but is not an H-subdivision. Let, for definiteness, $P_k = \{u_k, v_k\}$ and $u_kv_k \notin E(G)$. Denote $X = \bigcup_{j=1}^{k} V(P_j)$, $x = u_k$, and $y = v_k$. Let $A = N(x) - X$, $B = N(y) - X$, and $R = V(G) - (X \cup A \cup B)$.

It is well known (see e.g. [8, p. 51]) that

\begin{equation}
b(H) \geq \frac{(k + 1)}{2}
\end{equation}
for every H with $k > 0$ edges.

Therefore, each of A and B has size at least

$$\delta(G) - (|X| - 2) \geq \frac{n + b(H) - 2}{2} - (|W| + 3k - 2b(H) + 2(k - 1) + 3 - 2)$$

$$\geq \frac{9.5k + b(H) - 2}{2} - 6k + 1 + 2b(H) = 2.5b(H) - 1.25k \geq 1.25.$$

It follows that we may choose distinct $a_1, a_2 \in A$ and $b_1, b_2 \in B$.

For $v \in V(G)$, let $d_j(v)$ denote the number of neighbors of v in the interior of P_j plus β_j if $u_j \in N_G(v)$ and plus γ_j if $v_j \in N_G(v)$ (β_j and γ_j are defined above (2)). By (3), we have

$$(5) \quad \sum_{j=1}^k d_j(v) = |N_G(v) \cap X| \quad \forall v \in V(G).$$

Let l_p be the number of P_j's of length p for $p \geq 1$, and l_0 be the number of P_j's that are not paths. Then

$$(6) \quad |X| = |W| + \sum_{p \geq 1} (p - 1)l_p = \sum_{j=1}^k (\beta_j + \gamma_j) + \sum_{p \geq 1} (p - 1)l_p$$

and

$$(7) \quad k = \sum_{p \geq 0} l_p = \alpha + l_0.$$

We will assume that every path P_j is of the form $P_j = u_j, w_{1,j}, \ldots, w_{p_j-1,j}, v_j$. Sometimes, for simplicity we will write p instead of p_j and w_i instead of $w_{i,j}$ if j is clear from the context. In the rest of the paper, for every $j = 1, \ldots, k$ and fixed $a_1, a_2 \in A$, $b_1, b_2 \in B$, we denote $M_j = d_j(x) + d_j(y)$ and $L_j = d_j(a_1) + d_j(a_2) + d_j(b_1) + d_j(b_2)$.

3. Main Lemma

Lemma 3 in this section is important for the proof. It provides that an optimal partial linkage (if it is not an H-subdivision) has fewer vertices than condition (I) in the definition of partial linkage requires. Thus, more vertices are available to improve the linkage. We begin with a lemma needed in the proof of Lemma 3.

Lemma 2. Let $a_1, a_2 \in A$, $b_1, b_2 \in B$. For a $P_j = u_j, w_1, \ldots, w_{p-1}, v_j$, let $s_j = M_j + 0.5L_j$, $\beta = \beta_j$, and $\gamma = \gamma_j$. Define

$$D_1(p, \beta, \gamma) = \begin{cases} p + 2 + 2\beta + 2\gamma, & \text{for } p \leq 1, \\ p + 4 + 2\beta + 2\gamma, & \text{for } p \geq 2. \end{cases}$$

Then

(a) $s_j \leq D_1(p, \beta, \gamma)$;

(b) $s_k \leq 2(\beta_k + \gamma_k)$. Furthermore, if $xy = u_kv_k \not\in E(G)$, then $s_k = \beta_k + \gamma_k$.

4
Proof. Let \(\lambda = \max\{\beta, \gamma\} \). Since \(H \) has no acyclic components, we have \(\lambda \leq 1 \) and \(\min\{\beta, \gamma\} \leq 0.5 \).

By definition, \(L_k = 2\beta_k + 2\gamma_k \). If \(xy \in E(G) \), then \(M_k = \beta_k + \gamma_k \); otherwise, \(M_k = 0 \). This proves (b).

Claim 1. Let \(Z = \{a_1, a_2, b_1, b_2\} \).

(i) For each \(z \in Z \), the distance in \(P_j \) between any two neighbors of \(z \) is at most two. In particular, each \(z \in Z \) has at most 3 neighbors in \(P_j \).

(ii) If \(p \geq 3 \), then no \(z \in Z \) is a common neighbor of \(u_j \) and \(v_j \).

(iii) If \(p \geq 3 \), then \(x \) and \(y \) have no interior neighbors of distance at most \(p - 3 \) in \(P_j \).

(iv) If \(p \geq 3 \), then \(x \) (respectively, \(y \)) has no interior neighbors at distance at most \(p - 4 \) in \(P_j \) from interior neighbors of \(b_1 \) and \(b_2 \) (respectively, of \(a_1 \) and \(a_2 \)).

Proof. If some \(z \in Z \) is adjacent to \(w_i \) and \(w_{i+m} \) for some \(m \geq 3 \) (we treat \(u_j \) as \(w_0 \) and \(v_j \) as \(w_p \)), then we can replace \(P_j \) by a shorter \(u_j, v_j \)-path, a contradiction to the optimality of \(C \). This proves (i), and (ii) is a partial case of (i).

If \(x \) and \(y \) have interior neighbors at distance at most \(p - 3 \) in \(P_j \), then we can delete \(P_j \) from \(C \) and add a shorter \(x, y \)-path. This proves (iii). The same trick proves (iv), completing the proof of the claim.

In order to prove (a), we consider several cases (depending on \(p \)).

CASE 1. \(p = 0 \). By (2), \(L_j \leq 4(\beta + \gamma) \leq 4 \). Therefore \(s_j = M_j + 0.5L_j \leq 2(\beta + \gamma) + 2 = D_1(0, \beta, \gamma) \).

CASE 2. \(p = 1 \). Trivially,

\[
s_j \leq 2(\beta + \gamma) + 0.5(4(\beta + \gamma)) \leq 2(\beta + \gamma) + 2 < D_1(1, \beta, \gamma).
\]

CASE 3. \(p = 2 \). If each of \(x \) and \(y \) is adjacent to \(w_1 \) and some \(z \in Z \) is adjacent to both \(u_j \) and \(v_j \), then \(C \) is not optimal: we can replace \(P_j \) by the path \(u_j, z, v_j \) and add the path \(xw_1y \). Otherwise, either \(M_j \leq 2(\beta + \gamma) + 1 \) and hence

\[
s_j \leq 2(\beta + \gamma) + 1 + 0.5(4(\beta + \gamma + 1)) \leq 2(\beta + \gamma) + 6 = D_1(2, \beta, \gamma),
\]

or \(L_j \leq 4(\lambda + 1) \) and hence

\[
s_j \leq 2(\beta + \gamma + 1) + 0.5(4(\lambda + 1)) \leq 2(\beta + \gamma) + 4 < D_1(2, \beta, \gamma).
\]

CASE 4. \(p = 3 \). By (iii), \(M_j \leq 2(\beta + \gamma) + 2 \). If \(L_j \leq 10 \), then \(s_j \leq D_1(3, \beta, \gamma) \). Otherwise, because of the symmetry between \(A \) and \(B \), we may assume that \(d_j(a_1) + d_j(a_2) > 5 \) and that \(d_j(a_1) > 2.5 \). Then by (ii), we may assume that \(a_1 \) is adjacent to \(w_1, w_2 \) and \(v_j \) and that \(a_2 \) is adjacent to \(w_1 \) and \(w_2 \) (and maybe to one more vertex). If \(yw_2 \in E(G) \), then we can replace \(P_j \) with \(u_j, w_1, a_1, v_j \) and add the path \(x, a_2, w_2, y \), a contradiction to the optimality of \(C \). If neither of \(x \) and \(y \) is adjacent to \(w_2 \), then by (iii), \(M_j \leq 2(\beta + \gamma) + 1 \), by (ii), \(L_j \leq 4(2 + \lambda) \leq 12 \), and therefore \(s_j \leq 2(\beta + \gamma) + 7 = D_1(3, \beta, \gamma) \). If \(xw_2 \in E(G) \) and some \(b \in \{b_1, b_2\} \) is adjacent to \(w_2 \), then we can replace \(P_j \) with \(u_j, w_1, a_1, v_j \) and add the path \(x, w_2, b, y \). Finally, if neither
of \(b_1w_2 \) and \(b_2w_2 \) is in \(E(G) \), then by (i), \(d_j(b_1) + d_j(b_2) \leq 2(1 + \lambda) \leq 4 \), and hence by (ii) \(L_j \leq 6 + 4 = 10 \).

CASE 5. \(p \geq 4 \). If \(x \) has \(r \) interior neighbors and \(r \geq 2 \), then by (iii), \(d_j(y) \leq \beta + \gamma \) and by (iv), \(d_j(b_i) \leq \max\{0, 3 - r\} + \lambda \). In this case,

\[
s_j \leq 2\beta + 2\gamma + r + 3 + \max\{0, 3 - r\} + \lambda.
\]

If \(r \geq 3 \), then \(s_j \leq 2\beta + 2\gamma + p - 1 + 3 + \lambda \leq p + 3 + 2\beta + 2\gamma \leq D_1(p, \beta, \gamma) \). If \(r = 2 \), then \(s_j \leq 2\beta + 2\gamma + r + 4 + \lambda \leq 2\beta + 2\gamma + p + 3 \leq D_1(p, \beta, \gamma) \), again.

Thus, we can assume that each of \(x \) and \(y \) has at most one interior neighbor in \(P_j \). By (iv) \(d_j(a_i) + d_j(y) \leq \beta + \gamma + \lambda + 3 \) and \(d_j(b_i) + d_j(x) \leq \beta + \gamma + \lambda + 3 \) for \(i = 1, 2 \). Therefore,

\[
s_j \leq 2\lambda + 6 + 2\beta + 2\gamma \leq 2\beta + 2\gamma + p + 2 + 2 = D_1(p, \beta, \gamma).
\]

This completes the proof of (a) and hence, of Lemma 2.

Lemma 3. Let \(a_1, a_2 \in A, \ b_1, b_2 \in B, \ Z = \{a_1, a_2, b_1, b_2\} \), and \(V_0 = (A \cup B) - Z - N_G(Z) \). Then \(|X| \leq |W| + 3k - 2b(H) + 2\alpha - |R| - |V_0| \).

Proof. Let

\[
(8) \quad \Sigma' = \deg_G(x) + \deg_G(y) + \frac{1}{2}(\deg_G(a_1) + \deg_G(a_2) + \deg_G(b_1) + \deg_G(b_2)).
\]

Observe that every vertex \(w \notin X \) contributes to \(\Sigma' \) at most 2: if \(w \in R \), then it is not adjacent to \(x \) and \(y \), and if \(w \in A \) (respectively, \(w \in B \)), then it is not adjacent to \(y, b_1, \) and \(b_2 \) (respectively, to \(x, a_1, \) and \(a_2 \)). By the definition, every vertex in \(V_0 \) is not adjacent to any vertex in \(Z \), and therefore contributes at most 1 to \(\Sigma' \). Furthermore, every \(z \in Z \) contributes at most 1.5 to \(\Sigma' \), since it is not adjacent to itself. Therefore,

\[
(9) \quad \Sigma' \leq 4 \cdot 1.5 + 2(|A \cup B| - 4) + 2|R| + \sum_{j=1}^{k} s_j - |V_0|.
\]

By Lemma 2 and (7),

\[
\sum_{j=1}^{k} s_j \leq k + l_0 + 2l_1 + \sum_{p \geq 2} (p + 3)l_p + 2 \sum_{j=1}^{k} (\beta_j + \gamma_j) - 1
\]

\[
= k + l_0 + 2l_1 + \sum_{p \geq 2} (p + 3)l_p + 2|W| - 1.
\]

Therefore,

\[
\Sigma' \leq 2(|A \cup B| + |R|) - 2 - |V_0| + 2(|W| + l_0 + \sum_{p \geq 1} p l_p) - 1 - l_0 + \sum_{p \geq 2} (3 - p)l_p + k
\]

\[
= 2n + 3k - |V_0| - 3 - l_0 - \sum_{p \geq 2} (p - 3)l_p.
\]

Combining with (6) and (7), we get

\[
|X| + \Sigma' \leq 2n + |W| + 3k + 2\alpha - 3 - l_0 - 2l_1 - |V_0|.
\]
By (4), \(\delta(G) \geq \frac{n+b(H)}{2} - 1 \) and hence \(\Sigma' \geq 2n + 2b(H) - 4 \). Thus,

\[(12) \quad |X| \leq |W| + 3k - 2b(H) + 2\alpha - l_0 - 2l_1 - |V_0| + 1 \leq |W| + 3k - 2b(H) + 2\alpha - |V_0|.
\]

If an \(r \in R \) has a neighbor \(a_0 \in A \) and a neighbor \(b_0 \in B \), then one can add to \(C \) the path \(P_k = x, a_0, r, b_0, y \). The new set of paths will be a better partial linkage, since the new \(X \) would have size at most \(|W| + 3k - 2b(H) + 2(\alpha + 1) + 1 \). Since this contradicts the choice of \(C \), no \(r \in R \) has both a neighbor in \(A \) and a neighbor in \(B \). Thus every \(r \in R \) contributes at most 1 to \(\Sigma' \), and (9) becomes

\[
\Sigma' \leq 4 \cdot 1.5 + 2(|A \cup B| - 4) + |R| + \sum_{j=1}^{k} s_j - |V_0|.
\]

Correspondingly, (12) transforms into

\[(13) \quad |X| \leq |W| + 3k - 2b(H) + 2\alpha - |V_0| - |R|.
\]

\[\square\]

4. Completion of the case of loopless \(H \)

Lemma 3 has the following two immediate consequences.

Lemma 4. \(|A| + |B| > 2k|.

*Proof.*** By Lemma 3, \(|A| + |B| = n - (|X| + |R|) \geq n - (|W| + 3k - 2b(H) + 2\alpha) \geq 9.5k - (k + 3k - 2\frac{k+1}{2} + 2(k - 1)) = 4.5k + 3 > 2k|.

\[\square\]

Lemma 5. Each \(v \in V(G) \) is adjacent to at least 3 vertices in \(A \cup B - V_0 \). In particular, either \(v \) has 2 neighbors in \(A \) that belong or are adjacent to the set \(\{a_1, a_2\} \), or 2 neighbors in \(B \) that belong or are adjacent to the set \(\{b_1, b_2\} \).

*Proof.*** By Lemma 3, \(\delta(G) - (|X| + |R| + |V_0|) \geq 0.5(9.5k + b(H) - 2) - |W| - 3k + 2b(H) - 2\alpha \geq 4.75k + 0.5b(H) - 1 - k - 3k + 2b(H) - 2(k - 1) = 2.5b(H) - 1.25k + 1 \geq 2.25 > 2 \). Thus each vertex has at least 3 neighbors in \(V(G) - X - R - V_0 \).

For given \(a_1, a_2 \in A \), \(b_1, b_2 \in B \), let \(A'' = A''(a_1, a_2) \) (respectively, \(B'' = B''(b_1, b_2) \)) denote the set of vertices in \(X \) having at least 2 neighbors in \(A \) (respectively, in \(B \)) that belong or are adjacent to the set \(\{a_1, a_2\} \) (respectively, \(\{b_1, b_2\} \)). The above lemma yields that for every choice of \(a_1, a_2, b_1, \) and \(b_2 \),

\[(14) \quad A'' \cup B'' = X.
\]

Lemma 6. For every non-adjacent \(s, t \in A \) (or \(B \)), \(|N(s) \cap N(t) - X| \geq 3|.

*Proof.*** Suppose to the contrary that \(a_1, a_2 \in A \), \(a_1a_2 \notin E(G) \) and the cardinality of the set \(T \) of common neighbors of \(a_1 \) and \(a_2 \) is at most two. Consider arbitrary \(b_1, b_2 \in B \) and let \(Z = \{a_1, a_2, b_1, b_2\} \). Then the contribution of every \(a \in A - Z - T \) to the sum \(\Sigma' \)
defined in (8) is at most 1.5. Thus, repeating the proof of Lemma 3, instead of (13), we will get
$$|X| \leq |W| - |R| + 3k - 2b(H) + 2\alpha - |V_0| - 0.5(|A - V_0| - 4).$$
In other words,
$$|X| + 0.5|A| + |R| \leq |W| + 3k - 2b(H) + 2\alpha + 2 \leq 6k - 2b(H).$$

On the other hand, $\deg_{G - X}(a_1) + \deg_{G - X}(a_2) \leq |A| + |T| + |R| - 2$ (the -2 arises because
neither of a_1 and a_2 is adjacent to a_1 or a_2).
It follows that
$$2 \left(\frac{n + b(H)}{2}\right) - 2 \leq \delta(G) \leq 2|X| + |A| + |R|,$$
which together with (15) yields $n + b(H) - 2 \leq 2(6k - 2b(H))$. Thus, $n \leq 12k - 5b(H) + 2 \leq
12k - 5\frac{k+1}{2} + 2 = 9.5k - 0.5$, a contradiction. \hfill \Box

For the rest of the section, we fix some distinct $a_1, a_2 \in A$ and $b_1, b_2 \in B$, and let $A'' = A''(a_1, a_2)$ and $B'' = B''(b_1, b_2)$.

Lemma 7. Let X be optimal, $1 \leq j \leq k - 1$, and either $\{u_j, v_j\} \subset A''$ or $\{u_j, v_j\} \subset B''$. Then
for each $a \in A$ and $b \in B$,
$$(N(a) \cap N(b) \cap P_j) \setminus \{u_j, v_j\} = \emptyset.$$

Proof. Assume to the contrary that $r \in N(a) \cap N(b) \cap P_j \setminus \{u_j, v_j\}$. Let $P'_k = (x, a, r, b, y)$. Without loss of generality, assume that $\{u_j, v_j\} \subset A''$. Then there exist $s \in N(u_j) \cap A \setminus \{a\}$ and $t \in N(v_j) \cap A \setminus \{a\}$. If $s = t$ or s is adjacent to t, then let $P'_j = (u_j, s, t, v_j)$.

If s and t are non-adjacent, then by Lemma 6, we have $|(N(s) \cap N(t)) \setminus X| \geq 3$, and therefore there exists $q \in N(s) \cap N(t) \setminus \{a, b\}$. In this case, let $P'_j = (u_j, s, q, t, v_j)$. In both cases, P'_j is a path disjoint from P'_k. Thus, in both cases we increase the number of P_js that are paths by one and, by (13), maintain $|X| \leq |W| + 3k - 2b(H) + 2(\alpha + 1) + 3$. This is a contradiction which completes the proof. \hfill \Box

Lemma 8. Let X be optimal, $1 \leq j \leq k - 1$, $P_j = (w_0, w_1, \ldots, w_p)$, where $w_0 = u_j \in A''$ and $w_p = v_j \in B''$. If some w_i, $1 \leq i \leq p - 1$ has a neighbor $a_0 \in A \cup \{x\}$ and a neighbor $b_0 \in B \cup \{y\}$, then each $w_{i'}$ for $i < i' \leq p$ has no neighbors in $A - a_0$ and each $w_{i''}$ for $0 \leq i'' < i$ has no neighbors in $B - b_0$.

Proof. Suppose some $w_{i'}$ for $i < i' \leq p$ has a neighbor $a' \in A - a_0$. By the definition of A'', u_j has a neighbor $a'' \in A - a_0$. By Lemma 6, the length of a shortest path P' from a'' to a' in $G[A - a_0]$ is at most two. Thus, we can replace P_j by the path $(u_j, a'', P', a', w_{i'}, P'_j, v_j)$ (where P'_j is the part of P_j connecting $w_{i'}$ with v_j) and add the path $P_k = (x, a_0, w_i, b_0, y)$. The new set of $\alpha + 1$ paths has at most $|X| + 5$ vertices, which by (13) is at most $|W| + 3k - 2b(H) + 2(\alpha + 1) + 3$, a contradiction to the choice of C. \hfill \Box

Similarly to $d_j(v)$, let $d_j(u, v)$ denote the number of common neighbors of u and v ‘inside’ P_j plus $\beta_j \cdot |N(u) \cap N(v) \cap \{u_j\}|$ plus $\gamma_j \cdot |N(u) \cap N(v) \cap \{v_j\}|$. Let X be optimal, $a \in A$, $b \in B$. Since $N(a) \cap N(b) \cap (V(G) - X + x + y) = \emptyset$, we have $\sum_{j=1}^{k-1} d_j(a, b) \geq 2\delta(G) - (n - 2) \geq b(H)$.

By Lemma 7, if $d_j(a, b) > 1$, then either $u_j \in A'' - B''$ and $v_j \in B'' - A''$ or $v_j \in A'' - B''$ and $u_j \in B'' - A''$. Recall that e_k also connects $A'' - B''$ with $B'' - A''$. It follows that the set
\(E' = \{ e_k \} \cup \{ e_j : d_j(a, b) > 1 \} \) spans a bipartite subgraph in \(H \) and hence \(|\{ e_j : d_j(a, b) > 1 \}| \leq b(H) - 1 \). Thus, there exists some \(j = j(a, b) \) such that \(d_j(a, b) > 1 \).

Lemma 9. Let \(X \) be optimal, \(1 \leq j \leq k - 1 \). Then there is at most one \(a \in A \), such that there is more than one \(b \in B \) with \(j = j(a, b) \).

Proof. Let \(P_j = (w_0, w_1, \ldots, w_p) \), where \(w_0 = u_j \) and \(w_p = v_j \). Assume to the contrary that there are \(a_1, a_2 \in A \) and \(b_1, b_2, b_3, b_4 \in B \) such that \(j(a_1, b_1) = j(a_1, b_2) = j(a_2, b_3) = j(a_2, b_4) = j \), where \(a_1 \neq a_2, b_1 \neq b_2, b_3 \neq b_4 \). By Lemma 7, we may assume that \(u_j \in A'' \setminus B'' \) and \(v_j \in B'' \setminus A'' \).

Since \(\beta_j + \gamma_j \leq 1 \), there exists \(i, 1 \leq i \leq p - 1 \), such that \(w_i \in N(a_1) \cap N(b_1) \). Since \(b_3 \neq b_4 \), we may assume that \(b_3 \neq b_1 \). By Lemma 8, no vertex in \(V(P_j) - w_i \) can belong to \(N(a_2) \cap N(b_3) \). However, this contradicts the fact that \(d_j(a_2, b_3) > 1 \).

By Lemma 4, \(|A| + |B| > 2k \). We may assume that \(|A| \leq |B| \). Thus \(|B| \geq k \). If \(|A| \geq k \), then since \(|B| \geq k \), for each \(a \in A \) there is some \(j(a) \) and \(b_1(a) \) and \(b_2(a) \) such that \(j(a) = j(a, b_1(a)) = j(a, b_2(a)) \). Furthermore, since \(|A| \geq k \), for some \(a_1, a_2 \in A \), the indices \(j(a_1) \) and \(j(a_2) \) are the same. This contradicts Lemma 9.

Thus we may assume that \(|A| < k \). Since \(|B| \geq k \), for each \(a \in A \) there is some \(j(a) \) and \(b_1(a) \) and \(b_2(a) \) such that \(j(a) = j(a, b_1(a)) = j(a, b_2(a)) \). Let \(J = \{ j(a) : a \in A \} \). By Lemma 9, the indices \(j(a) \) are distinct for distinct \(a \in A \) and hence \(|J| = |A| \).

Lemma 10. Suppose that \(j \in J \). Then \(x \) is not adjacent to some interior vertex of \(P_j \).

Proof. Let \(P_j = (w_0, w_1, \ldots, w_p) \), where \(w_0 = u_j \) and \(w_p = v_j \). By the definition of \(J \), there exists \(a \in A \) and \(b_1, b_2 \in B \) such that \(d_j(a, b_1), d_j(a, b_2) > 1 \). Since \(\beta_j + \gamma_j \leq 1 \), this implies that \(p \geq 2 \). Assume that \(u_j \in A'' \setminus B'' \) and \(v_j \in B'' \setminus A'' \).

Since \(u_j \notin B'' \), we may assume that \(u_j b_1 \notin E(G) \). Let \(w_{i'}, w_{i''} \in N(a) \cap N(b_1) \) and \(i' < i'' \). By the choice, \(1 \leq i' \leq p - 1 \). If \(x w_{i'} \in E(G) \), then we get a contradiction to Lemma 8 with \(a_0 = x \), since \(w_{i'} a \in E(G) \). Thus, \(x w_{i'} \notin E(G) \).

By Lemma 10, \(x \) is not adjacent to at least \(|J| \) vertices in \(X - W \). It also is not adjacent to itself. Thus, \(|N(x) \cap X| \leq |X| - |J| - 1 \leq |W| + 3k - 2b(H) + 2(k - 1) - |J| - 1 \leq 6k - 2b(H) - 3 - |J| \). Since \(|J| = |A| = |N(x) \cap X| \), we get

\[
\frac{n + b(H)}{2} - 1 \leq \deg(x) \leq 6k - 2b(H) - 3,
\]

which yields \(n \leq 12k - 5b(H) - 4 \leq 9.5k - 6.5 \), a contradiction. This contradiction proves that an optimal partial \(H \)-linkage is an \(H \)-linkage in the case of loopless \(H \).

By condition (I) in the definition of a partial \(H \)-linkage, \(|X| \leq |W| - 2b(H) + 5k + 3 \leq 5k + 2 \).

5. **Proof of the general case**

As in Section 2, it is enough to consider \(H \) that either has no acyclic components or is connected and has at most two vertices. Let \(H \) have \(k' \) non-loop edges and \(k'' \) loops, in total \(k = k' + k'' \) edges. Recall that \(n \geq 9.5(k_1 + 1) \), where \(k_1 = k + c(H) \). Note that \(b(H) \) does not depend on \(k'' \), thus \(b(H) \geq 0.5k' \).
Let $f: V(H) \to V(G)$ be an injective mapping and $W = f(V(H))$. Let $E(H) = \{e_j = u_j^0v_j^0 : 1 \leq j \leq k\}$. We may assume that the first k' edges are not loops. Let $u_j = f(u_j^0)$ and $v_j = f(v_j^0)$.

Let H' be the multigraph obtained from H by deleting all loops and let $k' = k' + c(H')$. Since H' is loopless, our theorem is proved for it, and thus f can be extended to an H'-subdivision in G on at most $5k' + 2$ vertices. Recall that if H' has no acyclic components, then $k' = k$.

If H' has an acyclic component, then so does H, and hence by the above, $|V(H')| \leq 2$. It was observed in Section 2 that in this case G has a subdivision of H on at most 3 vertices. Thus, in either case, f can be extended to an H'-subdivision in G on at most $5k' + 2$ vertices. Among such H'-subdivisions choose one, say, F_1, with the fewest vertices and let $X_1 = V(F_1)$. We will extend F_1 to a partial H-subdivision F such that

(I') as many loops as possible are mapped to internally disjoint cycles of length at most 4 and

(II') among partial H-subdivisions satisfying (I'), the set $X = V(F)$ has the smallest size.

We claim that such a partial H-subdivision is actually an H-subdivision. Suppose not. Then we may assume that F represents the images $g(e_j)$ for $1 \leq j \leq q$, where $k' \leq q \leq k - 1$.

First we observe that by the minimality of F_1 and F, every vertex outside X has at most 3 neighbors in $g(e_j)$ for each $1 \leq j \leq q$.

Let e_{q+1} be a loop at vertex u_{q+1}^0 and $u_{q+1} = f(u_{q+1}^0)$. Consider graph $G' = G - (X - u_{q+1})$.

If H is not an isolated vertex, then every $v \in W$ is in X_1 (in fact, v belongs to $g(e_j)$ for some $1 \leq j \leq k'$), therefore, u_{q+1} has at most $3(q - k')$ neighbors in $X - X_1$ by (I'). If H is an isolated vertex, then $k' = 0$, $V(H) = \{u_{q+1}\}$ and u_{q+1} has at most $2q$ neighbors in X. It follows that

$$\deg_{G'}(u_{q+1}) \geq \deg_{G}(u_{q+1}) - 5k' - 2 - 3(q - k') \geq \frac{n + k'/2}{2} - 1 - 5k' - 2 - 3(q - k')$$

$$\geq \frac{n}{2} - 4.75q - 3 \geq \frac{9.5(k + 1)}{2} - 4.75(k - 1) - 3 \geq 6.5.$$

Let $S = N_{G'}(u_{q+1})$. If some vertices of S are adjacent or have a common neighbor in G' other than u_{q+1}, then we extend our partial H-linkage. If this is not the case, then all neighbors in G' of vertices in S, apart from u_{q+1}, are distinct. Thus,

$$\sum_{s \in S} (\deg_{G'}(s) - 1) + |S| + 1 \leq n - (|X| - 1).$$

Since $S \cap X = \emptyset$, by the above, $\deg_{G'}(s) \geq \deg_{G}(s) - \min\{|X|, 3q\}$ for every $s \in S$. Thus, (16) yields $|S| (\delta(G) - \min\{|X|, 3q\}) + 1 \leq n - |X| + 1$. Since $|S| > 6$, we have

$$\frac{6n}{2} \leq 6 \min\{|X|, 3q\} + n - |X| \leq 15q + n \leq 15(k - 1) + n.$$

It follows that $2n < 15k$, a contradiction.

References

[7] T. Whalen, Degree conditions and relations to distance, extendability, and levels of connectivity in graphs.