ON IRREDUCIBLE NO-HOLE L(2,1)-COLORING OF TREES

RENU C. LASKAR, GRETCHEN L. MATTHEWS, BETH NOVICK*
DEPARTMENT OF MATHEMATICAL SCIENCES
CLEMSON UNIVERSITY
CLEMSON, SC 29634-0975

JOHN VILLALPANDO
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
GONZAGA UNIVERSITY
SPOKANE, WA 99258-2615

E-MAIL: RCLSK@CLEMSON.EDU, GMATTHE@CLEMSON.EDU,
NBETH@CLEMSON.EDU, VILLALPANDO@GONZAGA.EDU

An L(2,1)-coloring of a graph is a coloring of its vertices so that the colors of adjacent vertices differ by at least two and the colors of vertices with a common neighbor differ by at least one. The span of a graph \(G \), denoted \(\lambda(G) \), is the smallest number \(\lambda \) such that there is an L(2,1)-coloring of \(G \) using the integers 0, \ldots, \(\lambda \). Such colorings were first studied by Griggs and Yeh where they show that \(\Delta + 1 \leq \lambda(T) \leq \Delta + 2 \) for all trees \(T \).

Recently, Laskar and Villalpando defined the notion of irreducible no-hole colorability. An L(2,1)-coloring \(f \) is said to be no-hole provided all colors 0, \ldots, \(k \) are used, for some \(k \); it is irreducible provided that decreasing the color of any vertex results in a coloring that is no longer an L(2,1)-coloring. The inh-span of an graph \(G \), denoted \(\lambda_{inh}(G) \), is the smallest number \(\lambda \) such that there is an irreducible no-hole coloring of \(G \) using the integers 0, \ldots, \(\lambda \). Laskar and Villalpando proved that if \(T \) is a tree that is not a star, then \(\Delta + 1 \leq \lambda_{inh}(T) \leq \Delta + 2 \).

In this talk, we show that for most trees \(T \), the inh-span of \(T \) is equal to its span, that is, \(\lambda_{inh}(T) = \lambda(T) \).